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1. Density matrix formulation of Quantum mechanics The basic ingredients of
quantum mechanics are: states, observables and dynamics. In the density matrix for-
mulation we can start from the following (incomplete) postulates:

I.) Each physical system is associated with a topological separable complex Hilbert
space (H, 〈·|·〉). The (mixed) state of a quantum system is described by a
non-negative, self-adjoint (trace-class) linear operator with unit trace, i.e. an
element of D := {ρ ∈ L(H) | ρ = ρ†, ρ ≥ 0, Tr ρ = 1}.
Remark: In quantum information theory, it will be sufficient to consider finite
dimensional Hilbert spaces most of the time. From now on, we will always
assume that Hilbert spaces are finite-dimensional in the tutorials (if not otherwise
stated).

II.) Observables are represented by Hermitian operators on H. The expectation
value of an observable A in the state ρ is given by 〈A〉ρ = Tr(Aρ).

III.) The time-evolution of the state of a quantum system is given by a differential
function ρ : R→ D such that

dρ

dt
= −i[H, ρ],

where H is the observable associated to the total energy of the system.

Let us get some geometrical intuition about the set of quantum states.

a) Show that D is a convex set, i.e. that for all ρ, τ ∈ D and λ ∈ (0, 1) it holds that
λρ+ (1− λ)τ ∈ D.

b) Show that the set P = {π ∈ L(H) | π = π†, π2 = π, rank π = 1} of orthogonal
projectors onto one-dimensional subspaces of H is a subset of D.

The extreme points of a convex set are those that can not be expressed as a convex
combination of other points in the set, i.e. x ∈ D is an extreme point if there exists no
a, b ∈ D, a 6= b and λ ∈ (0, 1) such that x = λa+ (1− λ)b.

c) Show that P is the set of extreme points of D.

Most probably, you have originally learned another definition for quantum states in your
first quantum mechanics course. Namely, pure quantum states are rays of the Hilbert
space H. The rays of a Hilbert space are the equivalence classes of unit vector that only
differ by a phase factor. In symbols, we have rays(H) = {|ψ〉 ∈ H | ‖|ψ〉‖2

2 = 1}/ ∼
with the equivalence relation: |ψ〉 ∼ |φ〉 if there exist α ∈ R such that |ψ〉 = eiα |φ〉.
Often physicists tend to drop the equivalence relation and talk about unit vectors as
quantum states instead of rays.

d) Show that there is a one-to-one mapping between P and rays(H).

e) Use this mapping to translate the postulates (I.-III.) to the language of pure states
(rays).

f) Argue that pur(ρ) := Tr(ρ2) is a measure for the ‘purity’ of a state ρ ∈ D.
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2. An example
We consider a system with Hilbert space H = C2 and basis {|0〉 , |1〉}. We define the
states ρ1 = 1

2
(|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|) and ρ2 = 1

2
(|0〉〈0| + |1〉〈1|) and the

observables σz = |0〉〈0| − |1〉〈1| and σx = |0〉〈1|+ |1〉〈0|.
a) Is ρ1 or ρ2 a pure state, respectively? If this is the case, give the expression of the

corresponding ray.

b) Calculate the expectation values 〈σz 〉ρ1 ,〈σz 〉ρ2 ,〈σx〉ρ1 and 〈σx〉ρ2 .
c) Give an example of a physical system that can be described by H = C2 and

prescriptions to prepare the states ρ1 and ρ2 in this setting. What are the physical
observables that correspond to σz and σx?

3. Tensor products
The configuration space of a quantum system with multiple degrees of freedom is de-
scribed by the tensor product of the Hilbert spaces of each degree of freedom. In the
following exercise we will familiarise ourselves with the construction of tensor product
spaces.

Let H1 and H2 be Hilbert spaces with basis B1 = {|i〉1}di=1 and B2 = {|i〉2}Di=1,
respectively. One can construct a new vector space H1 ⊗H2 by using the set of tuples
B1×B2 = {(|i〉1 , |j〉2) : |i〉1 ∈ B1, |j〉2 ∈ B2} as a basis. The basis elements (|i〉1 , |j〉2)
are also typically denoted by |i〉 |j〉, |i, j〉 or |i〉⊗|j〉. The last notation can be extended
to a bilinear composition ⊗ : H1 ×H2 → H1 ⊗H2 by defining

|ψ〉 ⊗ |φ〉 :=
d∑
i=1

D∑
j=1

〈i|ψ〉 〈j |φ〉 |i, j〉 . (1)

a) What is the dimension of the vector space H1⊗H2? What is the Hilbert space of
a system of n spin-1/2 particles? What is its dimension?

b) Show that the operation ⊗ : H1 ×H2 → H1 ⊗H2 defined above is bilinear.

c) Is ⊗ : H1 ×H2 → H1 ⊗H2 surjective? (Please argue.)

The dual (vector) space of a vector space H is defined as H∗ := {〈ψ | : H → C, linear}.
H∗1 possesses a dual basis {〈i|}di=1 with respect to B1 by requiring orthonomality 〈i|j〉 =
δij. The dual space is itself a vector space.

d) Define an orthonomal basis of the dual space of H1 ⊗H2.

e) Equip the dual space with a canonical scalar product and show that it becomes a
Hilbert space. (Regarding the completeness, a comment is sufficient.)

We denote the vector space of linear operators on H by L(H) = {X : H → H, linear}.
f) Show that L(H1) is isomorphic to H1 ⊗H∗1.

g) Use the isomorphism established in the previous task to define the tensor product
A⊗B of two operators A,B ∈ L(H).

h) Show that the following identities hold for all operators A,B,C : H1 → H1 and
vectors |φ〉 , |ψ〉 ∈ H1:

(i) (A⊗B)(|φ〉 ⊗ |ψ〉) = (A |φ〉)⊗ (B |ψ〉)
(ii) (A⊗B)(C ⊗D) = (AC)⊗ (BD)
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4. Local and realistic theories The violation of so-called Bell inequalities by quantum
mechanics lies at the (or rather, a) heart of the way in which quantum information is
distinct from classical information (as you will see in the next lecture). Bell inequalities
(and their violation by quantum mechanics) capture rigorously the discomfort that Ein-
stein, Podolsky and Rosen (EPR) famously formulate in their 1935 paper, demanding
that

“In a complete theory there is an element corresponding to each element of
reality.”

In this exercise, we want to investigate theories of the type EPR consider complete,
namely, local and realistic theories.

To this end we consider an EPR-type setting, in which two parties, Alice and Bob are
space-like separated and receive particles sent from and prepared by a third party, say,
Charlie. Alice and Bob are each capable of performing certain tests or measurements
on those particles by adjusting their measurement apparatus.

More precisely, Alice and Bob (randomly) choose between two configurations s ∈ S =
{±1} of their measurement apparatus as soon as the particles arrive. The outcomes
of their tests A,B may be ±1 and depend on how Charlie prepares the particles,
the details of his apparatus, and so on. All of Charlie’s parameters described by some
configuration λ in some configuration space Λ as well as the distribution p(λ) according
to which he picks a configuration are unknown to Alice and Bob, while, of course, their
measurement setting is known to them. We now make the following two assumptions
about this setting:

• Realism: The configuration λ and the measurement setting s uniquely determine
the outcome of the tests. Consequently, we can assign deterministic functions

A,B : S × S × Λ→ {±1} ,

for Alice’s and Bob’s test, respectively.

• Locality : Alice’s performing her test (somewhere space-like separated) does not
influence the result of Bob’s measurement, and vice versa. This implies that in
fact the outcome of A,B only depends on the respective test configuration of Alice
or Bob so that we can write

A :S × Λ→ {±1}; (s, λ) 7→ As(λ)

B :S × Λ→ {±1}; (s, λ) 7→ Bs(λ)

We will now look at the S-parameter

S = 〈A1B1 + A2B1 + A1B2 − A2B2〉λ (2)

Here, 〈X〉λ =
∑

λ∈ΛX(λ)p(λ) is the expectation value of the random variable X that
depends on λ.

a) Derive an upper bound on the absolute value of the S-parameter for a local realistic
theory of the type described above.

Now assume that Charlie does not send an arbitrary pair of particles, but a quantum-
mechanical maximally entangled state |ψ〉 := (|00〉 + |11〉)/

√
2 where the first tensor

copy is sent to Alice and the second to Bob. Alice measures either A1 = X ⊗ 1 or
A2 = Z ⊗ 1 on her copy of the state, while Bob measures either B1 = 1⊗ (Z +X)/

√
2

or B2 = 1⊗ (X − Z)/
√

2.

b) Calculate S in this setting. What do you conclude?
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This example is an instance of the more general question, what values S can take if
the outcomes of tests as above are described by quantum mechanics. In this case,
Charlie’s configuration space is just the space of quantum states on two copies of a
Hilbert space, which we take to be the density matrices on two qubits: D(C2 ⊗ C2).
The tests Alice and Bob are allowed to perform are just two dichotomic measurements
(i.e., measurements with outcomes ±1) each, so Ai ⊗ 1, and 1 ⊗ Bi, i = 1, 2, with
Ai, Bi ∈ B(C2).

We can therefore write the S-parameter as

Sqm = 〈A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2〉ρ , (3)

where 〈·〉ρ = Tr[·ρ] now denotes the quantum-mechanical expectation value.

c) Show that

(A1 ⊗B1 + A1 ⊗B2 + A2 ⊗B1 − A2 ⊗B2)2 = 41− [A1, A2]⊗ [B1, B2] , (4)

to derive an upper bound on Sqm.

Further reading:

• Einstein et al. (1935): The original EPR paper.

• Popescu and Rohrlich (1994) derive more general upper bounds on S for so-called
non-signalling theories.

• Hoban et al. (2011) give a unified description of Bell inequalities and develop a
geometric perspective on them.
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