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1. Quantum Fourier transform. Perhaps at the heart of the majority of modern
quantum algorithms lies the phase estimation algorithm. For this reason, it is crucial
in the field of quantum computation to be familiar with phase estimation. It relies on
an efficient implementation of the quantum Fourier transform, to which we devote this
excercise.

In classical numerics the discrete Fourier transform (DFT) is defined as the linear map

F : CN → CN , x 7→ y with yk = 1√
N

∑N−1
j=0 xj exp

{
2πijk
N

}
. The quantum Fourier

transform is analogously defined as the unitary operation F : C2n → C2n , |j〉 7→
1√
2n

∑2n−1
k=0 exp

{
2πijk
2n

}
|k〉.

a) Look-up the computational complexity of the fastest classical algorithm for the
Fourier transform.

Solution: The fast-fourier transform requires O(N logN) operations.

The quantum Fourier transform can be implemented using the Hadamard gates H,

H =
1√
2

(
1 1
1 −1

)
(1)

the controlled phase gate that applies

Rk =

(
1 0

0 e2πi/2
k

)
(2)

on a qubit if another qubit is |1〉 and CNOT gates that implement swap operations.

b) Show that the following circuit implements the three qubit quantum Fourier trans-
form

H R2 R3

H R2

H

X

X X
.

Solution: We will restrict our attention to inputs in the computational basis.

We first look at the the three CNOT-gates at the end of the circuit. Evaluating the
circuit on the computational basis shows that this group just implement a swap of the
first and third qubit.

Now, let us have a look at the remaning gates. Let x, y ∈ {0, 1}, we can cast
the action of the Hadamard gate as H |x〉 = 1√

2

(
|0〉+ e2πi

x
2 |1〉

)
. The action of

the phase gate on |+〉 controlled by the qubit |y〉 can analogously be written as
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Rk |+〉 = 1√
2

(
|0〉+ e2πi

y

2k |1〉
)

. This allows us to evaluate the output of the circuit

including the swap gate acting on the input state |xyz〉 with x, y, z ∈ {0, 1} as

|ψout〉 =
1
√

2
3

(
|0〉+ e2πi[

z
2 ] |1〉

)
⊗
(
|0〉+ e2πi[

y
2
+ z

4 ] |1〉
)
⊗
(
|0〉+ e2πi[

x
2
+ y

4
+ z

8 ] |1〉
)
.

(3)

It remains to to convince ourself that this actual a representation of the quantum
Fourier transform. To this end, using the binary representation of k = 4k2 + 2k1 + k0

F |xyz〉 =
1
√

2
3

∑
k2,k1,k0∈{1,0}

e2πi[
x
2
+ y

4
+ z

8 ]·(4k2+2k1+k0) |k2k1k0〉 (4)

=
1
√

2
3

 ∑
k2∈{0,1}

e2πi[
x
2
+ y

4
+ z

8 ]4k2 |k2〉

 (5)

⊗

 ∑
k1∈{0,1}

e2πi[
x
2
+ y

4
+ z

8 ]2k1 |k1〉

 (6)

⊗

 ∑
k0∈{0,1}

e2πi[
x
2
+ y

4
+ z

8 ]k0 |k0〉

 (7)

=
1
√

2
3

 ∑
k2∈{0,1}

e2πi[
z
2 ]k2 |k2〉

 (8)

⊗

 ∑
k1∈{0,1}

e2πi[
y
2
+ z

4 ]k1 |k1〉

 (9)

⊗

 ∑
k0∈{0,1}

e2πi[
x
2
+ y

4
+ z

8 ]k0 |k0〉

 , (10)

which is the expression we have derived for |ψout〉.
c) How does this generalise to the n qubit quantum Fourier transform?

Solution: For each additional register one adds an corresponding controlled phase
gate to all the previous registers and an Hadamard on the new one.

The swap circuit at the end is replaced by a combination of swaps implementing a
general reversion of the order of the registers.

d) What is the circuit complexity of the quantum Fourier transform and how does it
compare to the classical DFT algorithms?

Solution: Before the reversion, we act with n gates on the first register, n− 1 gates
on the second and so on. This adds up to a total number of n(n − 1)/2 gates. The
reversion can be performed with at most n/2 swaps adding 3n/2 CNOT gates to the
circuit. Thus, we end up with a circuit complexity of O(n2).

In constrast, the classical computational complexity of the fast fourier transform is
O(n2n), i.e. exponentially worse.
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Note that the quantum Fourier transform can in fact be approximately implemented
with only O(n log n) gates.

2. Stabilizer quantum computation.

One of the most celebrated results in quantum computation is a statement about the
resource costs of simulating quantum computations on a classical computers. The
Gottesman-Knill theorem states that quantum computations composed of Clifford gates
with stabilizer states as inputs can be classically simulated in the sense that there
exists a classical algorithm with polynomial runtime which can sample from the output
distribution of such a computation. Furthermore, the so-called stabilizer formalism
plays an important rôle in the development of quantum error correction.

In this problem we will trace the train of thought underlying this result. Throughout,
we will let n be the number of qubits and hence H = (C2)⊗n be the Hilbert space. Let
us start with some definitions

(i) Let G1 = {±1,±X,±Y,±Z,±1,±iX,±iY,±iZ} be the single-qubit Pauli group
where multiplication is the group operation.1.

(ii) Let Gn := {
⊗n

i=1 Pi, Pi ∈ G1} be the n-qubit Pauli group.

(iii) A stabilizer state is a quantum state |ψ〉 ∈ H that is uniquely (up to a global
phase) described by a set S|ψ〉 = {S1, . . . , Sm} ⊂ Gn satisfying Si |ψ〉 = +1 |ψ〉.
We call the generalised pauli-operators Si the stabilizers of |ψ〉.2

(iv) A Clifford operator C is a unitary on H which leaves Gn invariant, i.e. for all
g ∈ Gn it holds that CgC† ∈ Gn. In group theoretic slang the Clifford group
C ⊂ U(2n) is the normalizer of Gn.

Ok, now we are ready to begin.

a) Show that the set S = {Z1, Z2, . . . , Zn} uniquely stabilizes the state |0〉⊗n, where
we use the notation Zi = 1⊗ · · ·⊗ 1⊗ Z︸︷︷︸

i-th qubit

⊗1⊗ · · ·⊗ 1 for the operator acting

as Z on the i-th qubit and as the identity on all other qubits.

Solution: For an arbitrary state |ψ〉 we have the n conditions Zi |ψ〉 = |ψ〉. Writing
|ψ〉 =

∑
x ψx |x1, . . . , xn〉 the i-th condition reads

Zi |ψ〉 =
∑
x

ψx(−1)xi |x1, . . . , xn〉 = |ψ〉 ,

from which we conclude that

|ψ〉 =
∑
x

ψxδxi,0 |x〉 .

Putting all n conditions together we have

|ψ〉 =
∑
x

ψx(
n∏
i=1

δxi,0) |x〉 = ψ00...0 |0〉⊗n .

b) Show that n stabilizers suffice to uniquely characterize an arbitrary state in the
Clifford orbit of |0〉⊗n, that is the states |ψ〉 for which there exists a (unique)
Clifford operator C such that |ψ〉 = C |0〉⊗n.

1Convince yourself that G1 is closed under multiplication and the unsigned Pauli matrices are not.
2More generally, we can talk about subspaces stabilized by a set S ⊂ Gn. This is a key insight in the theory of error
correction codes.
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Solution: We have the n relations Zi |0〉 = |0〉. Inserting an identity we obtain
CZiC

†C |0〉 = CZiC
† |ψ〉. Defining Si = CZiC

† and using the uniqueness of C the
claim follows.

c) Give a stabilizer representation of |+〉 ⊗ |0〉 ⊗ |−〉.
Solution: {X1, Z2,−X3}

Any Clifford operator can be expressed as a product of single- and two-qubit Clifford
operators, and indeed as a product from the generating set {CNOT,H, S}, where

S =

(
1 0
0 i

)
, H =

1√
2

(
1 1
1 −1

)
. (11)

d) Show that this gate set is sufficient to generate all Pauli matrices starting from
any single-qubit Pauli matrix.

Solution: H switches between Z and the X − Y plane. S rotates in the X − Y
plane. CNOT couples two qubits.

e) Show that one can efficiently (in the number of qubits and gates) determine the
stabilizer set of a state generated by a Clifford circuit (comprising CNOT,H, S
gates) applied to a stabilizer state

Solution: obvious. The algorithm updates the n stabilizers in every step of the
computation and thus has runtime O(nN), where N is the number of gates.

Now, let us assume that we measure the first qubit in the Z basis.

f) Assume Z1 commutes with all stabilizers. What is the probability of obtaining
outcome +1?

Solution: We have that Z1 |ψ〉 = Z1Si |ψ〉 = Si(Z1 |ψ〉) for all i. Z1 |ψ〉 is, thus,
stabilized by {S1, ..., Sn}. This implies Z1 |ψ〉 = eiφ |ψ〉. Since Z1 has eigenvalues −1
and 1, the probability of measuring 1 is either 0 or 1.

One can show that in case Z1 does not commute with all stabilizers, one can find an
alternative set of stabilizers such that it anti-commutes with one of them but commutes
with all remaining ones.

g) Use the existence of such a stabilizer to show that the measurement outcome is
uniformly random. What is the post-measurement state?

Solution: Let S1 be the anticommuting stabilizer. We then have

Pr[Z1 = +1] = Tr[(1 + Z1)/2 |ψ〉〈ψ|] = 〈ψ| (1 + Z1S1)/2 |ψ〉 (12)

= 〈ψ| (1− S1Z1)/2 |ψ〉 = 〈ψ| (1− Z1)/2 |ψ〉 (13)

= Pr[Z1 = −1] (14)

Hence Pr[Z1 = −1] = Pr[Z1 = +1] = 1/2. In absorbing S1 into 〈ψ| we implicitely
used that S1 is hermitian. This is necessarily the case because −1 cannot be part of
the stabilizer group: −1 stabilizes the trivial vector space only for obvious reasons.
Since |ψ〉 is a state it must be non-zero. If −1 is not in the stabilizer group, it must
be S2

i = 1 for all i.

The post-measurement state is (1 ± Z1)/2 |ψ〉, i.e., the stabilizer S1 is replaced by
(1± Z1)/2.

In fact, this generalizes to the measurement of an arbitrary Pauli operator g ∈ Gn.
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