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Remark: We will also discuss the parts of the previous exercise sheet that have not yet been
discussed. So in case you have not already prepared it, this is your chance.

1. The most general quantum measurements.

In a quantum mechanics course, measurements are typically introduced as projective
measurements of the eigenvalues of observables. But from a theoretical perspective
another measurement description is often helpful. For simplicity—and in the spirit of
information theory—we assume that the possible measurement outcomes are from a
discrete set X .1

A measurement with outcomes X on a quantum system with Hilbert space H can
be described by a positive operator valued measure (POVM) on X . We denote by
Pos(H) := {A ∈ L(H) | A < 0} the set of Hermitian positive semi-definite operators on
H. A POVM on a discrete space X is a map µ : X → Pos(H) such that

∑
x∈X µ(x) = Id.

If the system is in the quantum state ρ ∈ D(H), the probability of observing the
outcome x ∈ X is given by Tr(µ(x)ρ).

a) What is the difference between POVM measurements and the measurement de-
scription using observables?

Solution: Let A =
∑

i λiΠi be an observable with spec(A) = {λi} and Πi the
orthogonal projector to the i-th eigenspace. Then, the map spec(A) → Pos(H),
λi 7→ Πi defines a POVM, because

∑
i Π = Id. The converse however the constituent

operators range(µ) = {Ei} of a POVM µ are not required to be orthogonal projectors,
i.e. in general we do not have EiEj = δijEj as for the so-called projector valued
measurements (PVM) that can be directly expressed as observables. Nevertheless
every POVM can be implemented with PVMs using an ancillar system. More on this,
probabliy on a up-coming sheet.

It is often stated that this is the most general form of a quantum measurement. We
want to understand this statement in more detail. So what could be regarded as the
most general quantum measurement? One can start as follows: A (general) quantum
measurement M with outcomes in X is a map that associates to each quantum state
ρ ∈ D(H) a probability measure pρ on X , i.e. M : ρ 7→ pρ with pρ : X → [0, 1] such
that

∑
x∈X pρ(x) = 1.

b) Show that there is a one-to-one mapping between general quantum measurements
as defined above and POVMs on X .

Solution: Let M be a general measurement. To make sense of the other principles
of quantum mechanics, in particular the statistical interpration mixtures of quantum
states, we have to require that M is a linear map (It might have been a good idea to
already put this in the definition, but I forgot this).

1More generally, one can replace X by the σ-algebra of a measurable Borel space. This is the natural structure
from probability theory to describe a set of all possible events in an experiment. If you are curious and have some
time left, it is an instructive and not so hard exercise to look up the definitions of a Borel space and a probability
space and translate this exercise and its solution into this language.
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Then, for fixed x ∈ X the map ρ 7→ pρ(x) is by definition an arbitrary element of
the dual space of D(H). Being equipped with an inner product, we can use the the
canonical isomorphism L(H) ' L∗(H) to express every element in the dual space as
an element in L(H). Explicitely, we can define µ(x) ∈ L(H) such that ρ 7→ pρ(x) =
(µ(x), ρ). The restriction to pρ(x) ≥ 0 for all ρ and x amounts to restricting µ(x) to
an positive semi-definite operator. (Recall that Tr(Aρ) ≥ 0 for all ρ ∈ D(H) if and
only if A < 0. To see this express the trace in the eigenbasis of ρ or A.)

Now, for fixed ρ if x 7→ pρ(x) should define a probability measure, we have the
restriction that

∑
x∈X pρ(x) =

∑
x∈X(µ(x), ρ) = 1 for all ρ. This is the case if and

only if
∑

x∈X µ(x) = Id (Uniqueness can be seen e.g. by parameter counting).

Can you come up with a more general notion of quantum measurements?

Solution: I can not.

2. Impossible machines – on joint measurability.

As we all know from Kindergarten, in quantum mechanics position and momentum, and
in fact every pair of incompatible observables, cannot be jointly measured on the same
state with 100 % precision each. Or this is what they tell us Heisenberg’s uncertainty
relation quantifies . . .

In fact, ? himself seems to have had something like this in mind, when he described a
setting in which one tries to measure the position of a particle very precisely through a
microscope, arguing that photons hitting the particle to be measured will impart on it
an indeterminate Compton recoil on the order of h/λ, whence the uncertainty relation
∆x∆p ∼ λ · h/λ = h. This is sufficiently imprecise and non-rigorous to admit many
different interpretations.

Therefore, in this problem, we will take a closer look at different variants of formulating
Heisenberg-type uncertainty relations.

Preparation uncertainty. The first type of uncertainty relations deals with preparations
of individual states. An uncertainty relation of this type quantifies the impossibility
of preparing states on which two incompatible observables A and B both have definite
values. So we are given many copies of a state ρ and want to determine Tr[ρA] as well
as Tr[ρB] by measuring the two observables on separate copies of ρ. The setting for
preparation uncertainty is the following:

ρ

ρ

A

B

a

∆ρA

b

∆ρB

a

b

A preparation-uncertainty relation quantifies the product of the variances ∆ρA :=
(A− 〈A〉ρ)2 and ∆ρB := (B − 〈B〉ρ)2.

a) Use the Cauchy-Schwarz inequality to derive the lower bound

∆ρA∆ρB ≥
1

4
|〈[A,B]〉ρ|2
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Solution: Choose a vector |ψ〉 and define two operators A′ = (A− 〈A〉), and B′ =
(B − 〈B〉). Then

1

4
|〈[A,B]〉ρ|2 = |Im 〈ψ|A′B′ |ψ〉 |2 ≤ | 〈ψ|A′B′ |ψ〉 |2

≤ ‖A′ |ψ〉 ‖2‖B′ |ψ〉 ‖2 = 〈A′2〉ψ〈B′2〉ψ

Measurement uncertainty: On the other hand, one can also derive measurement un-
certainty relations, or so called error-disturbance relations. In this case, we are given a
single state and want to infer the value of two observables A and B by measuring the
two on the very same state. One might imagine two ways of doing so, one is sequential
measurement of A and B. The other is to perform some two-outcome measurement
R such that the marginals A′ and B′ of R can be used to approximate the outcome
distribution of A and B. This is what we will refer to as joint measurement and is
actually a very recent topic of research (Busch et al., 2013, 2014b; Ozawa, 2004).

It is important to note that in contrast to preparation uncertainty relations measure-
ment uncertainty relations are state-independent. They give us guarantees on how well
measurement devices can function on arbitrary input states.

We can formalise this setting in the language of POVMs as introduced in Problem 2 as
follows: Let A and B be two POVMs with outcome sets X and Y . Two every element
x ∈ X we can thus associate a positive semi-definite operator A(x) such that Tr[A(x)ρ]
is the probability of obtaining outcome x when measuring A, and likewise for B. In
slight abuse of notation2, for any subsetM ⊂ X we can also defineA(M) =

∑
x∈M A(x).

A joint measurement is then a two-outcome POVM R on the outcome set X×Y , whose
marginals are given as

A′(x) :=
∑
y∈Y

R(x, y), B′(x) :=
∑
x∈X

R(x, y) ,

so by simply ignoring the respective other outcomes.

ρ

ρ

ρ

R

A

B

b′

a′

a

b

a

b

a′

b′

∆(A,A′)

∆(B,B′)

We will start by deriving some simple statements about conditions for joint measura-
bility.

b) Show that if A(x) and B(y) commute for all x ∈ X, y ∈ Y , joint measurement is
possible.

2This notation is actually natural if the outcome sets are σ-algebras.
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Solution: Claim: R(x, y) := A(x)B(y) does the job.

Proof:

i. R(x, y) ≥ 0: Since [A(x), B(y)] = 0 we can jointly diagonalise them with a
unitary U such that A(x)B(y) = UDA(x)U

†UDB(y)U
† = UDA(x)DB(y)U

† ≥ 0
since A(x), B(y) ≥ 0 and the eigenvalues are multiplied.

ii.
∑

xR(x, y) = B(y) and
∑

y R(x, y) = A(x):∑
x

R(x, y) =
∑
x

A(x)B(y) = B(y)
∑
x

A(x) = B(y) · 1,

since A is a POVM. Likewise for B.

c) Let O be a positive semi-definite operator and P be a projection. Show that
P < O < 0 implies O = OP = PO = POP . (Here we use the notation that two
operators O,Q fulfil O < Q if O −Q is positive semi-definite.)

Solution: We have

0 ≤ (1− P )O(1− P ) ≤ (1− P )P (1− P ) = 0

since for any X, if O ≥ 0 then XOX† ≥ 0. We can then write X†X = (1−P )O(1−P )

with X =
√
O(1− P ). We then have

√
OX = O(1− P ) = 0 and hence O = OP =

O† = (OP )† = POP

d) Show that the condition in (b) is also necessary for joint measurement if A is a
projective measurement, that is, A(x) is an orthogonal projection for all x ∈ X
and A(x)A(y) = δxyA(x).

Hint: Express a joint measurement R(x, y) as a sum of the observables R(x, y)
and A(x)R({x}c, y) and use the relation derived in (c).

Solution: Observe that R(x, y) = A(x)R(x, y) by (c), and likewise R({x}c, y) =
A({x}c, y)R({x}c, y). But A(x)A({x}c) = 0 since A is an orthogonal projection.

We then have

R(x, y) = A(x)R(x, y) + A(x)A({x}c)R({x}c, y) (1)

= A(x)(R(x, y) +R({x}c, y)) (2)

= A(x)B(y), (3)

and since R(x, y) ≥ 0 we have A(x)B(y) = (A(x)B(y))† = B(y)A(x), so A and B
commute.

To actually derive an uncertainty relation quantifying the best possible joint measure-
ment of incompatible observables, of course, one first has to spell out an appropriate
distance measure.

One such choice is the state-dependent Wasserstein distance

∆(Aρ, A
′
ρ) =

[
inf
γ

∫∫
(x− x′)2dγ(x, x′)

] 1
2

,

where the infimum is taken over all couplings γ of Aρ and A′ρ, that is, all joint distri-
butions with marginals Aρ, A

′
ρ. One can now take

∆(A,A′) := sup
ρ

∆(Aρ, A
′
ρ),
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as the worst-case measure over all states.

Now consider two qubit observables E : ± 7→ E± and F : ± 7→ F± with POVM elements
E± = 1

2
(e01±e·σ) and F± = 1

2
(f01±f ·σ), as well as a state ρ = 1

2
(1+r·σ), where e, f , r

are unit vectors and σ = (X, Y, Z) denotes the vector of all Pauli matrices. Finally,
denote by Eρ = (Tr[E−ρ],Tr[E+ρ]) and Fρ = (Tr[F−ρ],Tr[F+ρ]) the corresponding
probability distributions.

e) Show that

γ(+,+) ≡ γ, γ(+,−) = Eρ(+)− γ
γ(−,+) = Fρ(+)− γ, γ(−,−) = 1− Eρ(+)− Fρ(+) + γ

is a coupling of the type above, and argue that it is the most general one.

Solution: Check the relations

γ(+,+) + γ(+,−) = Eρ(+) (4)

γ(−,+) + γ(−,−) = 1− Eρ(+) (5)

γ(+,+) + γ(−,+) = Fρ(+) (6)

γ(+,−) + γ(−,−) = 1− Fρ(+). (7)

There are three constraints, so we have one free variable (γ).

f) Determine ∆(Eρ, Fρ) as well as ∆(E,F ).

Solution: We find

∆(Eρ, Fρ)
2 = min

γ
4(Eρ(+)− γ) + 4(Fρ(+)− γ), (8)

since the other two terms vanish.

The minimum is attained at γ = min{Eρ(+), Fρ(+)} by the positivity constraint on
γ (γ(±,∓) ≥ 0).

We can determine Eρ(+) to be

Eρ(+) =
1

4
(Tr(e01) + Tr(e · σ) + Tr(r · σ) + Tr(e · σ)(r · σ))) (9)

=
1

2
(e0 + e · r), (10)

since the Pauli matrices are traceless and square to the identity.

Then we get if, without loss of generality, Eρ(+) ≤ Fρ(+)

∆(Eρ, Fρ)
2 = 2(f0 − e0 + r · (f − e)). (11)

One can now show (Busch et al., 2014a) the measurement uncertainty relation

∆(A,AR)2 + ∆(B,BR)2 ≥
√

2 [‖a− b‖+ ‖a + b‖ − 2] ,

where AR, BR denote the respective marginals of a joint measurement R.
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