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1. Encoding classical bits. On the last excercise sheet we introduced the description
of quantum measurements with the help of POVMs. We want to use this formulation
to study the following question:

Let H be a d-dimensional Hilbert space. Our aim is to encode n classical bits into the
space of quantum states D(H). To this end, we choose a set of 2n states {ρi}i∈{0,1}n ⊂
D(H), each state corresponding to a bit string. To decode the bit string we have to
make a measurement described by a POVM {Fi}i∈{0,1}n}, where the bit string is the
outcome.

How many classical bits can be encoded and decoded in a d-dimensional quantum
system in this way?

Consider a source that outputs the bit string x ∈ {0, 1}n with probability p(x).

a) Define the success probability of the decoding procedure.

b) Show that for p(x) = 2−n the success probability is bounded by 2−nd.
(Hint: Argue that 1 < ρi for all i and show that for A < 0 and B < C it holds
that Tr(AB) ≥ Tr(AC) as a starting point.)

c) What does this imply?

2. Impossible machines – no cloning.

In this problem we will re-derive the impossibility results that you have seen in the
lecture but now directly using the structure of quantum theory.

Show that there does not exist a unitary map on two copies of a Hilbert space H which
acts in the following way:

∀ |ψ〉 ∈ H : U |ψ〉 |0〉 = eiφ(ψ) |ψ〉 |ψ〉 .

3. `p-norms
In quantum information we deal with a handful of different matrix spaces such as the
set of quantum states and in the near future also quantum channels. For quantita-
tive statements we have to equip these spaces with distance measures. Depending on
the application and context different distance measures have the desired operational
meaning.

A prominent role is played by the so called Schatten p-norms. But to set the stage we
have to first familiarise ourself with their analogons on vector spaces, namely `p-norms.
For 1 ≤ p <∞ the `p-norm on the complex vector space Cn is defined as

‖ · ‖`p : x 7→ ‖x‖`p :=

(
n∑
i=1

|xi|p
) 1

p

,

and the `∞-norm as

‖ · ‖`∞ : x 7→ ‖x‖`∞ := lim
p→∞
‖x‖`p .

We will now characterise the function ‖ ·‖`p and derive important properties. We begin
with an explicit expression for the `∞-norm.
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a) Show that ‖x‖`∞ = max1≤i≤n |xi|.
For all of what follows the notion of a convex function will be important. Let D ⊂ R
be a convex set. We say that a function f : D → R is convex if

f

(∑
i

aixi

)
≤
∑
i

aif(xi),

for all xi ∈ D and ai ≥ 0, i = 1, . . . ,m such that
∑

i ai = 1.

b) Show that any twice continuously differentiable function on an open intervall is
convex if and only if its second derivative is everywhere nonnegative.

c) Show that | · |p is a convex function for p ≥ 1.

We will now use this fact to show that ‖ · ‖`p is a norm (positive definite, absolutely
homogeneous, subadditive aka triangle inequality).

d) Argue that ‖ · ‖`p is positive definite and absolutely homogeneous for 1 ≤ p < ∞
and p =∞.

That was easy. Now comes the hard part; we have to show that the norms satisfy the
triangle inequality, i.e.

‖x+ y‖`p ≤ ‖x‖`p + ‖y‖`p . (1)

In fact, the triangle inequality for `p-norms has even its own name, Minkowski inequal-
ity. A clever way to prove this inequality is to normalise the right hand side, introduce
normalised vectors and then use the convexity of | · |p.

e) Argue that it is sufficient to consider the case ‖x‖`p = λ and ‖y‖`p = (1− λ) with
λ ∈ (0, 1) in order to proof the Minkowski inequality.

f) Show the Minkowski inequality for the `p-norms when 1 ≤ p <∞.

A crucial property of the `p-norms is Hölder’s inequality. It generalises the Cauchy-
Schwarz inequality, which is its special case for p = 2. Let 〈·, ·〉 be the Euclidean inner
product on Cn, i.e. 〈x, y〉 =

∑n
i=1 x̄iyi with ·̄ denoting the complex conjugate. Hölder’s

inequality reads

|〈x, y〉| ≤ ‖x‖`p‖y‖`q , where
1

p
+

1

q
= 1.

Like for the proof of Minkowski’s inequality, it will be useful to use normalised vectors
in the proof of Hölder’s inequality. Furthermore, we will need to first establish the
arithmetic-geometric mean inequality

n∏
i=1

xaii ≤
n∑
i=1

aixi if xi ≥ 0, ai ≥ 0,
∑
i

ai = 1. (2)

g) Show that − log is a convex function and use this to show the arithmetic-geometric
mean inequality, Eq. (2).

h) Now, prove Hölder’s inequality for 1 < p <∞.

i) Finally, prove Hölder’s inequality for p = 1.

More generally, for a norm ‖ · ‖ on Cd one can define its dual norm ‖ · ‖∗ as

‖x‖∗ := sup
x∈Cd,‖y‖=1

|〈x, y〉|. (3)
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j) Show that for every norm ‖ · ‖ on Cd it holds:

|〈x, y〉| ≤ ‖x‖‖y‖∗ (4)

for all x, y ∈ Cd.

k) Show that for the dual norm ‖ · ‖∗`p of the `p-norm ‖ · ‖`p is the norm ‖ · ‖`q with
1
p

+ 1
q

= 1.

Finally, we will show another convenient property of the `p norms.

l) Show that the `p norms are ordered in the sense that

‖x‖`p ≤ ‖x‖`q , for q ≤ p.

4. Non-uniqueness of the decomposition of mixed states.

Consider two macroscopically different preparation schemes of a large number of po-
larised photons:

Preparation A. For each photon we toss a fair coin. Depending on whether we
get head or tail, we prepare the photon to have either vertical or horizontal linear
polarisation.

Preparation B. For each photon we toss a fair coin. Depending on whether we get
head or tail, we prepare the photon to have either left-handed or right-handed circular
polarisation.

We are given a large number of photons which all were prepared by the same scheme.

a) Argue that having only access to the photons we can not distinguish which of the
preparation scheme was used.

b) Argue that if it were possible to distinguish such types of preparations by measur-
ing the photon, locality would be violated.
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