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Discussed in Tutorial: 17/05/2018 J. Eisert, D. Hangleiter, I. Roth

1. Encoding classical bits. On the last excercise sheet we introduced the description
of quantum measurements with the help of POVMs. We want to use this formulation
to study the following question:

Let H be a d-dimensional Hilbert space. Our aim is to encode n classical bits into the
space of quantum states D(#). To this end, we choose a set of 2" states {p;}icfo,13» C
D(H), each state corresponding to a bit string. To decode the bit string we have to
make a measurement described by a POVM {F}ic0,13», where the bit string is the
outcome.

How many classical bits can be encoded and decoded in a d-dimensional quantum
system in this way?

Consider a source that outputs the bit string = € {0, 1}" with probability p(z).
a) Define the success probability of the decoding procedure.

Solution: Tr[p,F;] should be maximal (1) for each i. The total success probability is
then the expectation of that with respect to p, i.e., >, p(z) Tr[p, F,]

b) Show that for p(z) = 27" the success probability is bounded by 27"d.
(Hint: Argue that 1 5= p; for all ¢ and show that for A > 0 and B = C' it holds
that Tr(AB) > Tr(AC) as a starting point.)

Solution: Clearly 1 — p = U(1 — A)UT, where U diagonalises p. But since p is a
quantum state with eigenvalues smaller than one, 1 — A has only nonnegative entries,
hence the claim 1 = p; for all i. If A= 0and B —C = 0, then Tr AB — Tr AC =
Tr(A(B — C)) > 0. Thus, Tr(AB) > Tr(AC).

Hence, we have

> plz) Tr[p, Fo] = 27" Z Tr[p;Fj] < 27" Z Tr[F]=2"Tr1=2"d (1)

and the claim follows.
¢) What does this imply?

Solution: One cannot encode more than log, d bits in a d-dimensional quantum sys-
tem.
2. Impossible machines — no cloning.

In this problem we will re-derive the impossibility results that you have seen in the
lecture but now directly using the structure of quantum theory.

Show that there does not exist a unitary map on two copies of a Hilbert space H which
acts in the following way:

Vi) € H: Ulw)|0) = @) |ih) o) .
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Solution: Assume this was the case for [1)) and |@) with [¢)) # i@ |¢) for any a.

Let us consider the scalar product between two such vectors

(e [ ¥) = O {e| UTU ¥} |0)
DD (o] (| [9) [4)
= (p| ¢>2 el(@()=0(¢))

Taking absolute values on both sides shows that (| 1) can only be 0 or 1, so it cannot
be the case that U clones arbitrary states.

. {,-norms
In quantum information we deal with a handful of different matrix spaces such as the
set of quantum states and in the near future also quantum channels. For quantita-
tive statements we have to equip these spaces with distance measures. Depending on
the application and context different distance measures have the desired operational
meaning.

A prominent role is played by the so called Schatten p-norms. But to set the stage we
have to first familiarise ourself with their analogons on vector spaces, namely ¢,-norms.
For 1 < p < oo the ¢,-norm on the complex vector space C" is defined as

Y
Il @ Nl = (Z W) ,
i=1

and the /,.,-norm as

|- Nl = @ = [lfley, = lim [zl
P—00

We will now characterise the function || -[|,, and derive important properties. We begin
with an explicit expression for the /,-norm.

a) Show that ||z, = maxj<;<p |zl

Solution: We assume w.l.o.g. that |z1| = max; |z;|
1
n P
— 1 — 1 P
[lle, = lim = Tim (Z ] ) 2)
|z;]P
1+ 3
Z ‘xlyp ( )

= [za]. (4)

= |x1] hm

For all of what follows the notion of a convex function will be important. Let D C R
be a convex set. We say that a function f: D — R is convez if

f (Z Gi$i> < Z a; f(x:),

for all z; € D and a; > 0,i=1,...,m such that ) . a;, = 1.

b) Show that any twice continuously differentiable function on an open interval is
convex if and only if its second derivative is everywhere nonnegative.
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Solution: First, observe that the definition above is equivalent to requiring that for
A€ (0,1) and z,y € D it holds that f(Az + (1 — A)y) < Mf(z) + (1 — A)f(y). The
definition follows directly by applying this result repeatedly.

Convex < f" >0
Forany xz,y € (o, ), x <y, and A € (0,1), we set z = Az + (1 —\)y. Assume f"(x)
be non-negative on (a, (), correspondingly f’(x) is non-decreasing on («, 3). Now,

F(2) = Af(2) + (1= N f(2) (5)
P A+ M)+ (1— A /Jf Yt + (1N f(y) (6)
M)+ (1= N @)+ M)z — 1)+ (1= V() ) (7)

= M(@) + (1= M)+ (=) [z — O+ (1— A)y)] (s)
=M@+ (1= N f(y). (9)

Convex = " >0

Conversely, assume that f”(x) is negative somewhere, than by continuity there exist
a subinterval (o, ') where f’ is decreasing everywhere. Choosing =,y € (¢/, 5’) and
A € (0,1) implies that [ f'(t)dt > f'(z)(z — ) and [ f'(t)dt > f'(2 )(z—y)
Thus, the same calculation as above yields f(z) > Af(z) + (1 — A) f(y) establishing
a contradiction to f being convex.

Alternatively: Assume f(Az + (1 — N)y) < Af(z) + (1 — A)f(y) holds. Then, the
following is also true

1) = 1 (et m+ 3 -1) (10)
< Sf+h)+ o fla—h) (11)
S 0< f(x+h)+ fla—h) —2f(2). (12)

This is exactly the term one encounters in the Taylor expansion of the second derivative

() — i L) I ) 2f(@)

h—o00 h?

(13)

c¢) Show that | - |? is a convex function for p > 1.

Solution: Applying the criterion of the last excercise, it is obvious that the function
(0,00) = R 2+ 2P with p > 1 is convex. Consider z,y € R, z,y # 0 and X € (0,1)

then
Az + (1= Nyl” < (M| + (1 = A)[y])? (14)
< Azl 4+ (1= N[yl (15)
We will now use this fact to show that || - ||, is a norm (positive definite, absolutely

homogeneous, subadditive aka triangle inequality).

d) Argue that | - ||, is positive definite and absolutely homogeneous for 1 < p < oo
and p = oo.



Solution: Clear ;)

That was easy. Now comes the hard part; we have to show that the norms satisfy the
triangle inequality, i.e.

[z +ylle, < llzlle, + lylle, - (16)

In fact, the triangle inequality for /,-norms has even its own name, Minkowsk: inequal-
ity. A clever way to prove this inequality is to normalise the right hand side, introduce
normalised vectors and then use the convexity of | - |7.

e) Argue that it is sufficient to consider the case [|z||,, = A and [|y[|s, = (1 — A) with
A € (0,1) in order to prove the Minkowski inequality.

Solution: Let Z,§ € R then by absolute homogeneity of || - ||,, we have
12+ 3lle, < 1Zlle, + 15]le, (17)
if and only if
1. 1.
152+ 7l <1 (18)
with s :== |||, + ||7]l¢,- Choosing z = 1% and y = 17 yields the situation above.

f) Show the Minkowski inequality for the £,-norms when 1 < p < co.

Solution: We write z = A% and y = (1 — A)y with ||z||,, = [|7]ls, = 1. Then,
12+ yllz, = A2 + (1 = A)glle, (19)
= Z IAZ; + (1= A)gl” (20)

< DO + (L= Al (21)
= A2lle, + (1= N3], (22)
=A+(1-XN)=1 (23)

A crucial property of the /,-norms is Holder’s inequality. It generalises the Cauchy-
Schwarz inequality, which is its special case for p = 2. Let (-, -) be the Euclidean inner
product on C", i.e. (x,y) = >, T;y; with = denoting the complex conjugate. Holder’s
inequality reads

1 1
[z, 9)] < llzlle,Nylle,, where PRt

Like for the proof of Minkowski’s inequality, it will be useful to use normalised vectors
in the proof of Holder’s inequality. Furthermore, we will need to first establish the
arithmetic-geometric mean inequality

ﬁxfigiaﬂi if 2> 0,0, >0, ) a;=1. (24)
=1 =1 7

g) Show that — log is a convex function and use this to show the arithmetic-geometric
mean inequality, Eq. (24).



h)

i)

Solution:  The function — log is twice continously differential and (—log x)" = (—1/z)" =

1/2* > 0 for x € R and, thus, convex.
Then,

—log [H xf’] = — Zai log z; > —log [Z aixi] ) (25)

By monotonicity of the logarithm, this implies Eq. (24).
Now, prove Holder’s inequality for 1 < p < oo.

Solution: Again, by absolute homogeneity of the norms and bilinearity of the scalar
product, it is sufficient to consider the case ||z, = ||y, = 1.

(=, 9)| = Z il |yl = Z(\x'l”)””(|y¢|q)”q) (26)

< Z IfC [P+ —Iyz| ) = —HSEHP —||y|\3q (27)
1 1

S 28
il (28)

Finally, prove Hélder’s inequality for p = 1.

Solution:  [(z,y)| = 3=, [willy:| < maxi{[i[} 22, [vil = ll#llesc 1yllen-

More generally, for a norm || - || on C? one can define its dual norm | - ||* as

)

JzlI* == sup  [(z,y)|. (29)

yeCd |ly[=1

Show that for every norm || - || on C¢ it holds:

[z, )] < [zl lly]l” (30)

for all 2,y € C%.

Show that the dual norm || - |[7 " of the £,-norm || - [|, is the £;-norm || - [, with
=1

Solution: By Holder's inequality, we have

[zlle, = sup [z, ). (31)

llylle, =1

Again by absolute homogeneity we can assume ||z||,, = 1. Setting y; = |z;|¥/?*1/x;
for all nonzero z; and 0 else one checks that for 1/p + 1/q = 1 the inequality is
saturated establishing the claim:

|mz|q/p+

=Dl =) | = lellf, = 1
% %

Finally, we will show another convenient property of the £, norms.

1) Show that the ¢, norms are ordered in the sense that

[2lle, < ll%lle,, for g <p.



Solution: Consider z € C" and define Z = x/||z||,,. In particular, we have Z; <1
for all i. Then, [lz|ly, = ll=llz, 22; 12" < lllz, 225 120" = [z ll<lZ, = NIz,

4. Non-uniqueness of the decomposition of mixed states.

Consider two macroscopically different preparation schemes of a large number of po-
larised photons:

Preparation A. For each photon we toss a fair coin. Depending on whether we
get head or tail, we prepare the photon to have either vertical or horizontal linear
polarisation.

Preparation B. For each photon we toss a fair coin. Depending on whether we get
head or tail, we prepare the photon to have either left-handed or right-handed circular
polarisation.

We are given a large number of photons which all were prepared by the same scheme.

a)

Argue that having only access to the photons we can not distinguish which of the
preparation scheme was used.

Solution: Both preparations give rise to the same quantum state, namely, the maxi-
mally mixed state. Hence, there is no measurement that distinguishes the two prepa-
rations.

Argue that if it were possible to distinguish such types of preparations by measur-
ing the photon, locality would be violated.

Solution: Protocol: EPR setting with Bell state
Bob chooses a measurement setting, X or Z and measures his half of the state.
Then, the state reads

pa = Tr[|v) (| Pi] + Tr[|v) (4| P, (32)

where P, 5 are either |+) (+],|—) (=] or |0) (O], |1) (1].
Depending on which measurement setting Bob chooses, the state on Alice’s side reads
3(10) 1+ 1) (1) or 5(|+) (+] + =) (=D

If Alice had a way of distinguishing the two mixtures, they could have communicated
a bit encoded as {X, Z}.



