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1. Schmidt decomposition and purification

In the lecture, you already saw the Schmidt decomposition of bipartite quantum states
|Ψ〉 ∈ H1 ⊗H2 as given by

|Ψ〉 =
d∑
i=1

√
λj
∣∣ψ1

j

〉 ∣∣ψ2
j

〉
,

where {
∣∣ψij〉} are orthonormal bases of Hi.

In this exercise, we will study some useful properties and applications of the Schmidt
decomposition. To begin with, let us look at states with the same Schmidt coefficients,
that is

|Ψ〉 =
d∑
i=1

√
λj
∣∣ψ1

j

〉 ∣∣ψ2
j

〉
, |Φ〉 =

d∑
i=1

√
λj
∣∣φ1
j

〉 ∣∣φ2
j

〉
.

a) Show that |Ψ〉 and |Φ〉 are related by a local unitary, i.e., a unitary of the form
U ⊗ V with U and V unitary. Give that unitary explicitly.

b) Show that any local unitary transformation leaves the Schmidt coefficients invari-
ant.

This gives rise to a nice interpretation of the Schmidt coefficients of a state in terms of
entanglement (more soon!):

c) Determine the reduced density matrices ρ1 = Tr2 |Ψ〉〈Ψ| and ρ2 = Tr1 |Ψ〉〈Ψ|. How
can the Schmidt coefficients be interpreted? What are the Schmidt coefficients of
the maximally entangled state?

d) Use the Schmidt decomposition to show that any bipartite state |Ψ〉 can be ex-
pressed as

|Ψ〉 = (X ⊗ 1) |Ω〉 ,

where |Ω〉 is a maximally entangled state.

The maximally entangled state is invariant under certain product unitaries U ⊗ V .

e) What are the conditions on U and V for this to be the case?

Recall from the lecture that for any quantum state ρ ∈ L(H) there exists a pure
quantum state |ψρ〉 ∈ H ⊗ G such that TrG[|ψρ〉〈ψρ|] = ρ. The Schmidt decomposition
is useful for explicitly constructing such purifications:

f) Give a purification of an arbitrary quantum state ρ in terms of its eigenvalues and
eigenvectors.

g) Show that two purifications |ψρ1〉 and |ψρ2〉 of the same state ρ are related by a
unitary transformation that acts on G only.
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2. General teleportation schemes

In the lecture you saw a teleportation scheme using a maximally entangled state shared
by Alice and Bob. In this exercise we will generalise this setting to teleportation schemes
with higher local dimensions.

We begin by reformulating the qubit teleportation scheme in terms of Bell-basis mea-
surements. The Bell basis for two qubits is given by

|Φ0〉 =
1√
2

(|00〉+ |11〉), |Φ1〉 =
1√
2

(|00〉 − |11〉),

|Φ2〉 =
1√
2

(|01〉+ |10〉), |Φ3〉 =
1√
2

(|01〉 − |10〉).

a) Show that the Bell basis can be prepared starting from |Φ0〉 using local Pauli
operations only.

b) Show that the scheme from the lecture is equivalent to the following one:

Alice and Bob share a maximally entangled state |Φ0〉, Alice prepares a state
|ω〉 = α |0〉 + β |1〉, measures in the Bell basis and transmits her measurement
result to Bob who applies the corresponding Pauli operator.

This reformulation generalises to a d-dimensional teleportation scheme in which Alice
and Bob share a maximally entangled state |ω〉 = 1√

d

∑d
i=1 |ii〉. As above the scheme

is based on measuring in a maximally entangled orthonormal basis set {|Ψα〉}d
2

α=1, i.e.,
an orthonormal basis for which Tr1[|Ψα〉〈Ψα|] = 1d = Tr2[|Ψα〉〈Ψα|].
There exist several constructions of linearly independent sets {Uα}d2α=1 of d2 trace-wise
orthogonal unitary operator Uα ∈ U(d),

Tr[Uα†Uβ] = dδαβ

for all α and β. In the following, we just assume the existence of such a set.

c) Show that such a set {Uα}d2α=1 gives rise to a maximally entangled basis set by
setting

|Ψα〉 = Uα ⊗ 1 |ω〉 .

d) Use the completeness relation for {|Ψα〉}α to show that any such operator basis
satisfies

1

d

∑
α

Uα
ijU

α

kl = δikδjl. (1)

e) Expand the basis states |Ψα〉 in the computational product basis {|ij〉}ij and give
the basis transformation Γ and its inverse Γ−1 explicitly. Hint: Identify the indices
α and i, j suitably.

f) Check the unitarity of Γ using Eq. (1) and express the states |ij〉 in the basis |Ψα〉.
Now consider the setting in which Alice and Bob share the state |ω〉 and Alice measures
her part of the system in the basis |Ψα〉.

g) Insert the resolution of the identity
∑

ij |ij〉〈ij| =
∑

α,ij(Γ
−1)αij |Ψα〉 〈ij| to derive

the unitary corrections required in the d-dimensional teleportation scheme.

Further reading:

Bennett et al. (1993): The original teleportation paper.

Banaszek (2000): A d-dimensional teleportation scheme.
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3. Schatten p-norms
On the last excercise sheet we have studied the `p-norms on vector spaces. The `p-
norms have important cousins on matrix spaces, the Schatten p-norms. As they are
important distant measures in quantum information, we study there different definitions
and properties in this excerice.

One way to introduce the Schatten p-norm with p ∈ [1,∞) for a matrix A ∈ Cn×n is

‖A‖p := (Tr [|A|p])
1
p , (2)

where |A| :=
√
A†A is the matrix absolute value. Furthermore, the case p = ∞ is

defined as the limit ‖A‖∞ = limp→∞ ‖A‖p.
These norms are related to the `p-norms of the eigenvalues (or more generally the
singular values) of A.

a) Let A be a Hermitian matrix and let λ = (λ1, . . . , λn) be the vector of its eigen-
values. Show that

‖A‖p = ‖λ‖`p (3)

for all p.

With this characterisation we have also established that the Schatten p-norms are
invariant under unitary transformations.

b) Give the statement and proof for the Hölder inequality for Schatten p-norms.

The most important Schatten p-norms have other interesting expressions:

c) Show that the Schatten 2-norm or Frobenius fulfils

‖A‖22 =
n∑

i,j=1

|Aij|2. (4)

In general, one can define the operator norms induced by the `p-norms:

‖A‖`p→`q = sup
‖x‖`p=1

‖Ax‖`q . (5)

d) What is the Schatten p-norm equal to ‖ · ‖`2→`2?
Another important properties of Schatten p-norms is sub-multiplicativity, ‖AB‖p ≤
‖A‖p‖B‖p for all p and A,B ∈ Cn×n. Sometimes the term matrix norm is exclusively
used for sub-multiplicative norms on matrix spaces.

e) Show the sub-multiplicativity of the Schatten p-norms.
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