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3. Schatten p-norms
On the last excercise sheet we have studied the `p-norms on vector spaces. The `p-
norms have important cousins on matrix spaces, the Schatten p-norms. As they are
important distant measures in quantum information, we study there different definitions
and properties in this excerice.

One way to introduce the Schatten p-norm with p ∈ [1,∞) for a matrix A ∈ Cn×n is

‖A‖p := (Tr [|A|p])
1
p , (1)

where |A| :=
√
A†A is the matrix absolute value. Furthermore, the case p = ∞ is

defined as the limit ‖A‖∞ = limp→∞ ‖A‖p.
These norms are related to the `p-norms of the eigenvalues (or more generally the
singular values) of A.

a) Let A be a Hermitian matrix and let λ = (λ1, . . . , λn) be the vector of its eigenva-
lues. Show that

‖A‖p = ‖λ‖`p (2)

for all p.

Solution: Let A = UΛU † be the eigenvalue decomposition of A. Recall that for
Hermitian A it holds that

√
A†A = U diag(|λ1|, . . . , |λn|)U † as can be easily checked

by squaring the equation. Then,

‖A‖pp = Tr
[
(A†A)

p
2

]
= Tr

[
UΛpU †

]
= Tr Λp =

∑
i

λpi = ‖λ‖p`p . (3)

With this characterisation we have also established that the Schatten p-norms are
invariant under unitary transformations.

b) Give the statement and proof for the Hölder inequality for Schatten p-norms.

Solution: There are different matrix version of Hölder’s inequality: Let 1 ≥ p ≥ ∞
and q such that 1

p
+ 1

q
= 1, then

Matrix Hölder I:

‖A†B‖1 ≤ ‖A‖p‖B‖q. (4)

Matrix Hölder II:∣∣Tr
[
A†B

]∣∣ ≤ ‖A‖p‖B‖q. (5)

Just as a side remark, there is even the more general version that holds for every
unitarily invariant norm ‖ · ‖.
Matrix Hölder III:

‖A†B‖ ≤ ‖(A†)p‖
1
p‖Bq‖

1
q . (6)
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The idea of the proof is to reduce the Matrix Hölder inequality to Hölder’s inequality
for `p-norms on vectors. To this end, we have to first establish the following inquality,
the so-called von Neumann inequality. Lemma “von Neumann-inequality”: Let A and
B be two matrices and let s(A) and s(B) be the vector of singular values of A and
B, respectively, ordered decreasingly. Then it holds that

|Tr [AB] | ≤ Tr |AB| ≤
∑
i

si(A)si(B). (7)

The proof of this inequality is actually much more tricky than I have anticipated. If
someone has a simpler or more elementary proof I am very keen to read it. (Seriously,
please write me an email.) Some elegant ways to proof it is make use of the theory of
majorisation and doubly stochastic matrices. To give you a flavor, here is a sketch of
the argument following Bhatia’s book on matrix analysis:

Proof sketch, the majorisation way: One can show that s(AB) is weakly majorised1

by the vector of the element-wise product s(A)s(B), which is a stronger statement
that implies the von Neumann inequality. For a matrix A, we denote by ∧kA the linear
map A⊗k restricted to act only on vectors in (Cn)⊗k that are anti-symmetric under
permuting the tensor factors. Using the min-max characterisation of singular values it
is easy to see that ‖ ∧k A‖1 =

∏k
i=1 si. Using the sub-multiplicativity of the spectral

norm (see below) one concludes that
∏k

i=1 si(AB) = ‖∧kAB‖1 ≤ ‖∧kA‖‖∧kB‖ =∏k
i=1 si(A)si(B). A function Φ : Cn → Cm that preserves weak majorisation, i.e.

x is weakly majorised by y implies that Φ(x) is weakly majorised by Φ(y), is called
strongly isotone. The function acting as the exponential function on each component
of a vector can be shown to be strongly isotone. Thus, we have for the component-wise
logarithm that log x weakly majorised by log y implies that x is weakliy majorised by y.
Using the preservation of majorisation when dropping the logarithm allows to conclude
the desired statement that s(AB) is weakly majorised by s(A)s(B) from the relate
statement about the partial products.

Slightly more direct proofs using doubly stochastic matrices were worked out by Mirsky.
A more elementary proof was given R. D. Grigorieff in a note in ’92. You can find it
on his webpage.

Proof of matrix Hölder I & II.

With the help of the von Neumann inequality, it is easy to reduce matrix Hölder to the
standard Hölder inequality for vectors:

Tr |AB| ≤ | 〈s(A) | s(B)〉 | ≤ ‖s(A)‖`p‖s(B)‖`q = ‖A‖p‖B‖q. (8)

The second version follows from the first version by showing that∣∣Tr
[
A†B

]∣∣ ≤ Tr
∣∣A†B∣∣ . (9)

The most important Schatten p-norms have other interesting expressions:

c) Show that the Schatten 2-norm or Frobenius norm fulfils

‖A‖22 =
n∑

i,j=1

|Aij|2. (10)

1A n-dimensional vector x is weakly majorising a n-dimensional vector y if
∑k

i=1 xi ≤
∑k

i=1 yi for all k ∈
{1, 2, . . . , n}.
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Solution:

‖A‖22 = TrA†A =
∑
i,j

ĀjiAji =
∑
i,j

|Aij|2. (11)

In general, one can define the operator norms induced by the `p-norms:

‖A‖`p→`q = sup
‖x‖`p=1

‖Ax‖`q . (12)

d) What is the Schatten p-norm equal to ‖ · ‖`2→`2?

Solution:

‖A‖`2→`2 = sup
‖x‖`2=1

‖Ax‖`2 = sup
‖x‖`2=1

√
〈x,A†Ax〉 (13)

=
√
λmax(A†A) = |λmax(A)|. (14)

Another important properties of Schatten p-norms is sub-multiplicativity, ‖AB‖p ≤
‖A‖p‖B‖p for all p and A,B ∈ Cn×n. Sometimes the term matrix norm is exclusively
used for sub-multiplicative norms on matrix spaces.

e) Show the sub-multiplicativity of the Schatten p-norms.

Solution: Using the min-max principle of the Rayleigh quotient, we first establish that
|λi(AB)| ≤ ‖A‖∞|λi(B)|. Proof:

|λi(AB)| = min
U,dimU=k

max
x∈U,‖x‖`2=1

|〈x,ABx〉| (15)

≤ min
U,dimU=k

max
x∈U,‖x‖`2=1

‖A‖∞|〈x,Bx〉| (16)

= ‖A‖∞|λi(B)|, (17)

where we have used that |〈x,Ay〉| ≤ ‖A‖∞|〈x, y〉|, which follows from the operator norm
definition of the spectral norm.

Now we have

‖AB‖p =

[∑
i

|λi(AB)|p
] 1

p

≤ ‖A‖∞

[∑
i

|λi(B)|p
] 1

p

(18)

= ‖A‖∞‖B‖p ≤ ‖A‖p‖B‖p. (19)

In the last step we have used the ordering of the p-norms inherited by the ordering of the
`p-norms, in particular ‖A‖∞ ≤ ‖A‖p for all p <∞.
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