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Discussed in Tutorial: 31/05/2018 J. Eisert, D. Hangleiter, I. Roth

(Hint: While the first two excersises are more abstract the last one discusses simple
examples and consists of hands-on calculations. If you get stuck somewhere on this sheet,
try to jump ahead to the examples or vice versa.)

Let X and Y be two Hilbert spaces and L(X ) and L(Y) denote the linear operators on
the Hilbert spaces. In the lecture, you got to know quantum channels as those linear maps
T : L(X )→ L(Y) such that the map T ⊗ 1d maps quantum states to quantum states where
1d acts on an additional Hilbert space of arbitrary dimension d. You have seen that this
amounts to requiring that quantum channels are linear maps that are completely positive
and trace preserving (CPT). If not specified otherwise, on this sheet, T will always denote
such a quantum channel.

You also got to know various representations of quantum channels

• The Kraus representation. A map T ∈ L(L(X ), L(Y)) is CPT iff there exist a set of

linear operators {Ki}i with Ki ∈ L(X ,Y) fulfiling
∑

iK
†
iKi = 1 such that

T (X) =
∑
i

KiXK
†
i . (1)

• The Stinespring representation. There exists an isometry V ∈ L(X ,Y ⊗ Z) or, equiv-
alently1, an arbitrary reference state |0〉 ∈ Z ′ and a corresponding unitary operator
U ∈ U(X ⊗ Z ′) with Y ⊗ Z ∼= X ⊗ Z ′ such that

T (X) = TrZ [V XV †] = TrZ [U(X ⊗ |0〉〈0|)U †]. (2)

• The Choi-Jamio lkowski representation. J(T ) ∈ Y ⊗ X

J(T ) := (T ⊗ 1) |ω〉〈ω| , (3)

where |ω〉 = 1√
d

∑
i |ii〉 is the maximally entangled state.

In this problem sheet, we will show the equivalence between those representations explicitly
and consider some examples.

1. On the Kraus representation of quantum channels
The operational meaning of Kraus operators can be understood in the following set-
ting in which, for simplicity, we restrict ourselves to quantum channels with the same
input and output space L(X ). Suppose we apply a unitary U to the joint system and
environment in the state ρ⊗ |0〉〈0| ∈ L(X ⊗Z), where |0〉 ∈ Z is some reference state,
and then we measure system Z in the computational basis.

a) Show that the action of the unitary on the joint system can be written as

U(ρ⊗ |0〉〈0|)U † =
∑
kl

EkρE
†
l ⊗ |k〉 〈l| ,

with respect to the basis {|i〉}i on the second system.

1Here, we use that any isometry V : X → X ⊗Z ′ can be written as A = U(1⊗|0〉) with an arbitrary reference state
|0〉 and a corresponding unitary U ∈ U(X ⊗ Z ′).
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Solution: We define Ek = (1⊗ 〈k|)U(1⊗ |0〉) and check.

b) Now, we perform a von-Neumann measurement on Z in the same basis. Determine
the post-measurement state conditioned on outcome i. What is the probability of
obtaining outcome i?

Solution: Up to normalisation the post-measurement state is given by ρi = EkρE
†
k.

The probability reads p(i|ρ) = Tr[(1⊗ |i〉〈i|)U(ρ⊗ |0〉〈0|)U † = Tr[E†iEiρ]

c) Give the corresponding operational interpretation of the Kraus operators Ek and
the unitary U .

Solution: The E†kEk can be seen as elements of a POVM implemented on the first
system by the von-Neumann measurement on the second system.

d) Now, suppose we want to implement a von-Neumann measurement on X via a
global unitary and a von-Neumann measurement on Z. Characterize the unitaries
U ∈ U(X ⊗Z) on the joint system that give rise to this situation. Give an example
for the case of two qubits.

Solution: They have to satisfy

[(1⊗ 〈i|)U(1⊗ |0〉)]2 = (1⊗ 〈i|)U(1⊗ |0〉),
[(1⊗ 〈i|)U(1⊗ |0〉)]† = (1⊗ 〈i|)U(1⊗ |0〉).

An example is CX = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X.

e) What do the operators Ek have to satisfy such that one can reverse the channel
after having (destructively) measured outcome k on Z?

Solution: Given k there must exist operators Fk such that

FkEkρE
†
kF
†
k

Tr[EkρE
†
k]

= 1X .

This is the case if only if the Ek are proportional to unitaries.

Finally, we will show some properties of the Kraus representation

f) Let {Ki}Ni=1 and {K̃j}Ni=1 be two sets of linear operators in L(X ,Z) fulfilling the
completeness relation of Kraus operators. Show that if the two sets are related
by a unitary transformations U ∈ U(N) such that K̃i =

∑
j UijKj, the channels

represented by the sets coincide.

Solution: We have

T̃ (X) =
∑
j

K̃jXK̃
†
j =

∑
ijk

UijKjXK
†
kU ik

=
∑
jk

(
U †kiUij

)
KjXK

†
k =

∑
jk

δkjKjXK
†
k,

where in the last equality we used the unitarity of U .

g) Show that all equal-sized Kraus representations of a given channel T are related
via a unitary transformation.

Hint: Relate the Kraus representation of two low-rank matrix factorisations of the
Choi matrix.
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Solution: Let {Ki} and {K̃i} be sets of Kraus operators. The Choi matrices of the
corresponding quantum channel Φ can be expressed as

J(Φ) = AA† = ÃÃ† (4)

where the matrix A is given by

A =
(
vecK1, vecK2, . . . , vecKN

)
(5)

and Ã defined analogously with the K̃s.

Recall from linear algebra that two low-rank factorisations L1R1 = L2R2 of the same
matrix are always related by a invertible matrix G such that L1 = L2G and R1 =
G−1R2. For the case Hermitian matrices with Ri = L†i , we conclude that G must be
a unitary matrix.

Thus, there exists a unitary matrix U(N) such that Ã = AU .

2. Equivalence between representations of quantum channels
Let us first show that the Choi-Jamio lkowski map J : L(L(X ), L(Y))→ L(Y ⊗X ) is a
linear bijection between the CPT maps on the one hand and the set of quantum states
on Y ⊗ X with partial-trace over Y is maximally mixed on the other hand.

a) Show that the inverse map can be defined by T̃ (X) = TrX [J(T )(1Y ⊗XT )]. and
makes J a bijection as described above.

Solution: We have to show that the map J is both injective and surjective under
suitable restrictions. For injectivity (1), we show that T̃ = T , for surjectivity (2) we
use a result from a previous sheet and the Kraus decomposition.

ad (1): We have that

T̃ (X) =
∑
ikl

(1⊗ 〈i|)(T (|k〉 〈l|)⊗ |k〉 〈l|)(1⊗XT )(1⊗ |i〉)

=
∑
ikl

T (|k〉 〈l|) 〈i | k〉 〈l|XT |i〉

=
∑
kl

T (|k〉 〈l|) 〈l|XT |k〉

= T (
∑
kl

Xkl |k〉 〈l|) = T (X),

where the last line holds by the linearity of T .

ad (2): Let us now show that J is surjective. To this end, choose a state ρ ∈ L(X⊗Y)
with TrY ρ = 1/d with d = dimY . We will show that there exists a quantum
channel that has ρ as its Choi-Jamio lkowski isomorph. Express ρ =

∑
i λi |ti〉〈ti| in its

eigenbasis.

We now make use of a fact proved on the last problem sheet, namely that for an
arbitrary pure quantum state |ψ〉 we find an operator Y such that |ψ〉 = (Y ⊗ 1) |Ω〉.
In particular, we can find operators Ki such that

√
d(Ki ⊗ 1) |Ω〉 =

√
λi |ti〉. (Recall

that this is just the inverse of the vectorisation map vec : L(X ) ∼= X ⊗X ∗ → X ⊗X
that acts on a basis as |i〉 〈j| 7→ |i〉 |j〉.)
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Due to the partial trace condition on ρ, the Kis fulfil∑
i

KiK
†
i = dTrY(Ki ⊗ 1) |Ω〉〈Ω| (K†i ⊗ 1) (6)

= TrY
∑
i

λi |ti〉〈ti| (7)

= TrY ρ = 1/d, (8)

where for the first step we inserted a funky looking identity 1 = dTrY |Ω〉〈Ω| between
the Ks.

So the set {Ki} satisfies the condition that we require of Kraus operators and, thus,
define a CPT channel.

Let ρT ∈ Y⊗X be the Choi-Jamio lkowski state corresponding to the quantum channel
T .

b) Determine a set of Kraus operators representing T .

Solution: Decompose ρT =
∑

i λi |ti〉〈ti| and let Ki =
√
λivec−1(|ti〉), where vec−1

denotes the inverse map of vectorisation.

c) Determine a unitary UT representing T via the Stinespring representation.

Solution: The isometry V : L(X ) → L(Y ⊗ Z) as in Def. (2) is given by V =∑
iKi ⊗ |i〉, where |i〉 are orthonormal vectors in Z as is easily checked.

We now construct the unitary from the Stinespring representation as U : L(X ⊗
Z ′) → L(Y ⊗ Z) by orthogonal completion (e.g. using Gram Schmidt) such that
U(1⊗ |0〉) = V with |0〉 ∈ Z ′.

Now, let UT be a unitary representing T in the Stinespring representation.

d) Determine the Choi-Jamio lkowski state representing T .

Solution: We obtain the isometry V = UT (1 ⊗ |0〉) =
∑

iKi ⊗ |i〉 and then set
ρT = (vecKi)i(vecKi)

†.

The rank of a quantum channel is defined as the rank of its Choi matrix.

e) Show that a quantum channel with rank r can be represented as a Stinespring
dilation using an auxiliary system of dimension r.

Solution: We have ρT =
∑r

i=1 λi |ti〉〈ti|, and hence Ki =
√
λivec−1(ti), i = 1, . . . , r.

Now define V =
∑r

i=1Ki ⊗ |i〉 as an isometry from X to Y ⊗ Cr.

3. Examples of quantum channels
Now we are ready to look at some examples of quantum channels acting on qubits, i.e.,
H = C2 . The following maps are important so-called noise channels

Fε(A) := εXAX + (1− ε)A

Dε(A) := εTr[A]
1
d

+ (1− ε)A

Aε(A) := εTr[A] |0〉〈0|+ (1− ε)A,

where ε ∈ [0, 1].

a) For each channel, show that it is CPT.
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b) For each channel, give its Choi-Jamio lkowski state, a Kraus representation and a
Stinespring representation.

Hint: It may help to consider ε = 1 in a first step and then generalize to arbitrary
ε ∈ [0, 1].

Solution: Let Id be the identity channel with J(Id) = |Ω〉〈Ω|. Then the Choi states
are given by the convex combination of the channel with ε = 1 and J(Id), e.g.
J(Fε) = εJ(F1) + (1− ε)J(Id). Now,

J(F1) =
1

d

∑
ij

|i(i⊕ 1)〉 〈j(j ⊕ 1)| , J(D1) =
1

d
1, J(A1) = |0〉〈0| ⊗ 1,

where ⊕ denotes the addition modulo 2 a.k.a. xor.

We have the following possible Kraus representations of the channels

F (B) = XBX†, D(B) = XBX + Y BY + ZBZ + 1B1

A(B) =

(
1 1
0 0

)
B

(
1 0
1 0

)
+

(
1 −1
0 0

)
B

(
1 0
−1 0

)
The isometries defining the Stinespring representation are: VF = X ⊗ |0〉, VD =
1⊗ |0〉+X ⊗ |1〉+ Y ⊗ |2〉+ Z ⊗ |3〉, likewise for VA.

The corresponding unitaries are given, for example by UF = X ⊗ |0〉〈0|,
UD = SWAP if the environment is prepared in the maximally mixed state.

c) Give a physical interpretation and a good name for each channel.

Solution: Bit-flip channel, depolarizing channel, amplitude damping channel.
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