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1. Local operations and classical communication (LOCC).

At the heart of entanglement theory lies the notion of LOCC. To see why, imagine
two parties that are a large distance apart from each other, say, Alice is in Berlin and
Bob in New York. While they may obtain access to shared entanglement from a third
party, it is unreasonable to assume that they are able to perform global operations on
the state they share. On the other hand, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

In the LOCC paradigm, each party is allowed to measure and perform unitary opera-
tions on their part of the shared state, and communicate via a classical channel. While
general LOCC protocols may involve several rounds of interaction (so Alice does some-
thing, sends the result to Bob, then Bob does something, who then communicates with
Alice, and so forth) it is often sufficient to consider only a single round of interaction.

So suppose, Alice and Bob share a state |ψ〉 with Schmidt decomposition |ψ〉 =∑
i

√
λi
∣∣i(A)〉 ∣∣i(B)

〉
. We will now show that any measurement {Mj}j on Bob’s side

can be simulated as follows: Alice performs a measurement {Nj}j on her side, sends
the result to Bob, who applies a corresponding unitary transformation.

a) Expand Mj in the Schmidt basis {
∣∣i(B)

〉
}i and define the measurement operator

Nj in terms of the expansion coefficients. Determine the post-measurement state
of Bob |ψj〉 (who performs {Mj}), and of Alice |φj〉 (who performs {Nj}).

b) Show that |φj〉 is local-unitary equivalent to |ψj〉.
c) Summarise the LOCC protocol.

2. Majorisation and transforming quantum states by local unitaries.

In this problem we will look at the task of transforming a given copy of a pure bipartite
quantum state |ψ〉 to another quantum state |φ〉 using LOCC. The question is: Under

which conditions is the transition |ψ〉 LOCC−−−→ |φ〉 possible?

The key to the answer of this question is the concept of majorisation. We say that a real
vector x ∈ Rn majorises y ∈ Rn (x � y) if for all k = 1, . . . , n

∑k
j=1 x

↓
j ≥

∑k
j=1 y

↓
j and∑n

j=1 x
↓
j =

∑d
j=1 y

↓
j . Here, x↓ denotes the sorted version of x, i.e., a permutation of the

elements of x such that x↓1 ≥ x↓2 ≥ . . . ≥ x↓n. So from now on, let
∑n

j=1 x
↓
j =

∑d
j=1 y

↓
j

a) Show that x � y if and only if for all t ∈ R

n∑
j=1

max(xj − t, 0) ≥
n∑
j=1

max(yj − t, 0).

b) Use the characterisation from (a) to show that the set {x : x ≺ y} is convex for
any given y.

One can now show that x ≺ y if and only if x =
∑

j pjΠjy for a probability distribution
p and permutation matrices Πj. By Birkhoff’s theorem, which lies at the heart of
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majorisation theory, that statement is equivalent to saying that x ≺ y if and only if
x = Dy for some doubly stochastic matrix D.

For two Hermitian operators X, Y ∈ L(Cd) we say that X ≺ Y if spec(X) ≺ spec(Y ).

c) Show that X ≺ Y if and only if there exists a probability distribution p and
unitary matrices Uj such that

X =
∑
j

pjUjY U
†
j .

We are now ready to prove the main theorem:

Theorem 1 |ψ〉 LOCC−−−→ |φ〉 if and only if spec(TrB[|ψ〉〈ψ|]) ≺ spec(TrB[|φ〉〈φ|]).

d) Show the forward direction using the result of Problem 1 you may assume that the
transformation is effected by a measurement on Alice’s side and a corresponding
unitary on Bob’s side. In other words, from Alice’s point of view it must be the
case that

Mj TrB[|ψ〉〈ψ|]M †
j = pj TrB[|φ〉〈φ|].

Hint: Use the polar decomposition of Mj

√
TrB[|ψ〉〈ψ|].

e) Now show the backward direction by proceeding analogously.

3. Distilling and diluting entanglement.

Now instead of being supplied with a single copy of an entangled state |ψ〉 ∈ C2 ⊗
C2 Alice and Bob have access to a large number of copies |ψ〉⊗m. We now ask two
questions (that were already asked in the lecture): (1) How many copies of the Bell
state (|00〉+ |11〉)/

√
2, or ebits can be ‘distilled’ from |ψ〉⊗m? (2) Into how many ‘less

entangled states’ |φ〉 can |ψ〉 be diluted?

To begin with, recall the definition of ε-typical sequences: Given ε > 0, a sequence
x = (x1, x2, . . . , xn) is called ε-typical with respect to a distribution p if

2−n(H(p)+ε) ≤ p(x1) · · · p(xn) ≤ 2−n(H(p)−ε),

where H(p) = −
∑

i pi log pi is the Shannon entropy of p. Denote by T (ε, n) the set
of length-n ε-typical sequences with respect to p. Also, recall the theorem of ε-typical
sequences:

Theorem 2 (i) Let ε > 0. Then for any δ > 0∃n ∈ N : Prx1,...,xn∼p[(x1, . . . , xn) ∈
T (ε, n)] ≥ 1− δ.

(ii) ∀ε, δ > 0∃n ∈ N : (1− δ)2n(H(p)−ε) ≤ |T (ε, n)| ≤ 2n(H(p)+ε)

We will now apply this theorem to the problem of diluting and distilling entanglement
from |ψ〉. To this end, suppose that |ψ〉 =

∑
x

√
p(x) |xA〉 |xB〉 in Schmidt decompo-

sition. Moreover, define by |φm〉 the state obtained from |ψ〉⊗m by omitting all terms
that are not ε-typical and renormalising.

a) Show that the number of terms in |φm〉 is at most 2m(S(ρψ)+ε) where ρψ = TrB[|ψ〉〈ψ|].

Let us now look at the following entanglement dilution protocol: Alice and Bob share
n Bell states. Alice locally prepares |φm〉 and teleports one half of |φm〉 to Bob.

b) How many Bell states are required such that after the dilution protocol Alice and
Bob share |φm〉.

c) Use Theorem 2 (i) to find a lower bound on the fidelity | 〈φm | ψ〉⊗m |2 for a suitably
chosen m.
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An entanglement concentration protocol proceeds along similar lines: Suppose Alice
and Bob share n copies of |ψ〉. Alice performs a measurement that projects onto the
ε-typical subspace of |ψ〉 to convert |ψ〉⊗m into |φm〉.

d) Determine an upper bound on the Schmidt coefficients of |φm〉.
e) Determine n as a function of m such that the state |φm〉 obtained from the pro-

jective measurement can be transformed into n ebits.

f) Show that the scaling of resources required for the distillation procedure is optimal.

Hint: Argue by means of a contradiction.

There are many more interesting issues that arise in the context of entanglement trans-
formation, some of which we want to mention here but cannot go into here1.

(i) There exist entangled states that cannot be distilled. These are precisely the positive-
partial-transpose entangled states (Horodecki et al., 1998).

(ii) Some transformations between quantum states |ψ〉 and |φ〉 using LOCC become possi-

ble only through a so-called catalyst state |c〉, that is, while |ψ〉 LOCC−−−→ |φ〉 is impossible,

there exists a state |c〉 such that |ψ〉 |c〉 LOCC−−−→ |φ〉 |c〉 is possible.

(iii) For the original paper on concentrating entanglement see (Bennett et al., 1996).
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1... because the sheet is already a bit long...
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