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1. Local operations and classical communication (LOCC).

At the heart of entanglement theory lies the notion of LOCC. To see why, imagine
two parties that are a large distance apart from each other, say, Alice is in Berlin and
Bob in New York. While they may obtain access to shared entanglement from a third
party, it is unreasonable to assume that they are able to perform global operations on
the state they share. On the other hand, it is perfectly conceivable that they transmit
classical messages, for example, to communicate measurement results.

In the LOCC paradigm, each party is allowed to measure and perform unitary opera-
tions on their part of the shared state, and communicate via a classical channel. While
general LOCC protocols may involve several rounds of interaction (so Alice does some-
thing, sends the result to Bob, then Bob does something, who then communicates with
Alice, and so forth) it is often sufficient to consider only a single round of interaction.

So suppose, Alice and Bob share a state |ψ〉 with Schmidt decomposition |ψ〉 =∑
i

√
λi
∣∣i(A)〉 ∣∣i(B)

〉
. We will now show that any measurement {Mj}j on Bob’s side

can be simulated as follows: Alice performs a measurement {Nj}j on her side, sends
the result to Bob, who applies a corresponding unitary transformation.

a) Expand Mj in the Schmidt basis {
∣∣i(B)

〉
}i and define the measurement operator

Nj in terms of the expansion coefficients. Determine the post-measurement state
of Bob |ψj〉 (who performs {Mj}), and of Alice |φj〉 (who performs {Nj}).

Solution: If we want to get the result j with the same probability for Bob measur-
ing {Mj} or Alice measuring {Nj}, the measurement operators of both two should
have the same expansion coefficients in their respective Schmidt basises, i.e. Mj =∑

ikM
(ik)
j

∣∣i(B)
〉 〈
k(B)

∣∣ and Nj =
∑

ikM
(ik)
j

∣∣i(A)〉 〈k(A)∣∣.
Then, pAj =

∑
ik λi|M

(ik)
j |2 = pBj . The post-measurement state of Bob is given by (1⊗

Mj) |ψ〉 =
∑

ikl

√
λlM

(ik)
j (1⊗

∣∣i(B)
〉〈
k(B)

∣∣) ∣∣l(A)〉 ∣∣l(B)
〉

=
∑

ik

√
λkM

(ik)
j

∣∣k(A)〉 ∣∣i(B)
〉

.

Similarly, Alice post-measurement state is (Nj⊗1) |ψ〉 =
∑

ik

√
λkM

(ik)
j

∣∣i(A)〉 ∣∣k(B)
〉
.

b) Show that |φj〉 is local-unitary equivalent to |ψj〉.

Solution: Both post-measurement state have the same Schmidt-decomposition and
are, thus, related by a local unitary transformation.

c) Summarise the LOCC protocol.

2. Majorisation and transforming quantum states by local unitaries.

In this problem we will look at the task of transforming a given copy of a pure bipartite
quantum state |ψ〉 to another quantum state |φ〉 using LOCC. The question is: Under

which conditions is the transition |ψ〉 LOCC−−−→ |φ〉 possible?

The key to the answer of this question is the concept of majorisation. We say that a real
vector x ∈ Rn majorises y ∈ Rn (x � y) if for all k = 1, . . . , n

∑k
j=1 x

↓
j ≥

∑k
j=1 y

↓
j and
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∑n
j=1 x

↓
j =

∑d
j=1 y

↓
j . Here, x↓ denotes the sorted version of x, i.e., a permutation of the

elements of x such that x↓1 ≥ x↓2 ≥ . . . ≥ x↓n. So from now on, let
∑n

j=1 x
↓
j =

∑d
j=1 y

↓
j

a) Show that x � y if and only if for all t ∈ R
n∑
j=1

max(xj − t, 0) ≥
n∑
j=1

max(yj − t, 0)

(and equality for t = 0).

Solution: Assume x � y. First, for t ≥ y↓0 the RHS vanishes and the inequality holds.

If we choose t ∈ [y↓k+1, y
↓
k), then

n∑
j=1

max{yj − t, 0} =
k∑
j=1

yj − kt ≤
k∑
j=1

xj − kt ≤
n∑
j=1

max{xj − t, 0}. (1)

Now the last possibility is t ≤ y↓n then the RHS is
∑n

j=1 yj − nt =
∑n

j=1 xj − nt ≤∑n
j=1 max{xj − t, 0}.

Now, the converse direction: We assume that the inequality holds and choose t = x↓k+1

k∑
j=1

yj − kt ≤
k∑
j=1

max{yj − t, 0} ≤
n∑
j=1

max{yj − t, 0} (2)

≤
n∑
j=1

max{xj − t, 0} =
k∑
j=1

xj − kt, (3)

from which majorisation follows.

b) Use the characterisation from (a) to show that the set {x : x ≺ y} is convex for
any given y.

Solution: Let x1, x2 ≺ y and λ ∈ (0, 1). The map R → R, a 7→ max{x − t, 0} is
convex for all t. Thus, also x 7→

∑n
i=1 max{xj − t, 0} is convex. Then, for all t

n∑
j=1

max{λ(x1)j + (1− λ)(x2)j − t, 0} (4)

≤ λ
n∑
j=1

max{(x1)j − t, 0}+ (1− λ)
n∑
j=1

max{(x2)j − t, 0} (5)

≤
n∑
j=1

max{yj − t, 0}. (6)

Furthermore,
∑n

j=1 [λx1 + (1− λ)x2] =
∑n

j=1 yj by linearity. In conclusion, we have
established that λx1 + (1− λ)x2 ≺ y.

One can now show that x ≺ y if and only if x =
∑

j pjΠjy for a probability distribution
p and permutation matrices Πj. By Birkhoff’s theorem, which lies at the heart of
majorisation theory, that statement is equivalent to saying that x ≺ y if and only if
x = Dy for some doubly stochastic matrix D1.

For two Hermitian operators X, Y ∈ L(Cd) we say that X ≺ Y if spec(X) ≺ spec(Y ).

1A matrix D is called doubly stochastic if ∀i, jDij ≥ 0 and ∀i
∑
j Dij =

∑
j Dji = 1, i.e., all rows and columns are

probability distributions.
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c) Show that X ≺ Y if and only if there exists a probability distribution p and
unitary matrices Uj such that

X =
∑
j

pjUjY U
†
j .

Solution: First, we assume X ≺ Y . We denote the eigenvalue decomposition of X
and Y by X = UΛXU

† and Y = V ΛY V
†, respectively. Since λX ≺ λY , there

exists a probability distribution p and permutation matrices Πj, such that λX =∑
j pjΠjλy. Correspondingly, we have ΛX =

∑
j pjΠjΛY Π†j, which may be seen

from writing down ΛX in coordinates. Thus, X = UΛXU
† =

∑
j pjUΠjΛY Π†jU

† =∑
j pjUΠjV

†Y VΠ†jU
† =

∑
j pjUjY U

†
j with Uj = UΠjV

†.

Conversely, if X =
∑

j pjUjY U
†
j , then ΛX =

∑
j pjU

†UjV ΛY V
†UjU . Thus, defining

new unitary matrices Vj = U †UjV , we have (λX)i =
∑

jk pj(Vj)ik(λY )k(V
†
j )ki =∑

jk pj|(Vj)ik|2(λX)k. We arrive at λX = DλY with Dik =
∑

j pj|(Vj)ik|2. Obviously,
Dik ≥ 0 for all i, k. Furthermore, since the columns and rows of a unitary matrix
Vj have unit `2-norm, it holds that

∑
iDik =

∑
ij pj|(Vj)ik|2 =

∑
j pj = 1 and,

analogously,
∑

kDik = 1. Altogether, we see that D is doubly stochastic. Therefore,
by Birkhoff’s theorem we have λX ≺ λY and, thus, X ≺ Y .

We are now ready to prove the main theorem:

Theorem 1 |ψ〉 LOCC−−−→ |φ〉 if and only if TrB[|ψ〉〈ψ|] ≺ TrB[|φ〉〈φ|].

d) Show the forward direction using the result of Problem 1. You may assume that the
transformation is effected by a measurement on Alice’s side and a corresponding
unitary on Bob’s side. In other words, from Alice’s point of view it must be the
case that 2

Mj TrB[|ψ〉〈ψ|]M †
j = pj TrB[|φ〉〈φ|].

Hint: Use the polar decomposition of Mj

√
TrB[|ψ〉〈ψ|].

Solution: Let’s call ρψ = TrB[|ψ〉〈ψ|] and ρφ, similarly. Using the polar decomposition
Mj
√
ρψ = |Mj

√
ρψ|Vj =

√
pjρφVj. Now,

ρψ =
∑
j

√
ρψM

†
jMj
√
ρψ =

∑
j

pjV
†
j ρφVj, (7)

from which ρψ ≺ ρφ follows from the assertion of (c).

e) Now show the backward direction by proceeding analogously.

Solution: Run the proof of (d) backwards: By assumption and (c), we know the
existence of Vjs and pj. Define the measurement operators such that Mj

√
ρψ =√

pjρφVj and check the completeness. It is not obvious that this definiton is possible
in general. So one actually has to work harder here having a closer look at the respective
ranges of the states . . .

Thus, we have an LOCC scheme doing the job.

2This is because the transition from |ψ〉 to |φ〉 comes about as a post-measurement state with probability pj .
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3. Distilling and diluting entanglement.

Now instead of being supplied with a single copy of an entangled state |ψ〉 ∈ C2 ⊗
C2 Alice and Bob have access to a large number of copies |ψ〉⊗m. We now ask two
questions (that were already asked in the lecture): (1) How many copies of the Bell
state (|00〉+ |11〉)/

√
2, or ebits can be ‘distilled’ from |ψ〉⊗m? (2) Into how many ‘less

entangled states’ |φ〉 can |ψ〉 be diluted?

To begin with, recall the definition of ε-typical sequences: Given ε > 0, a sequence
x = (x1, x2, . . . , xn) is called ε-typical with respect to a distribution p if

2−n(H(p)+ε) ≤ p(x1) · · · p(xn) ≤ 2−n(H(p)−ε), (8)

where H(p) = −
∑

i pi log pi is the Shannon entropy of p. Denote by T (ε, n) the set
of length-n ε-typical sequences with respect to p. Also, recall the theorem of ε-typical
sequences:

Theorem 2 (i) Let ε > 0. Then for any δ > 0∃n ∈ N : Prx1,...,xn∼p[(x1, . . . , xn) ∈
T (ε, n)] ≥ 1− δ.

(ii) ∀ε, δ > 0∃n ∈ N : (1− δ)2n(H(p)−ε) ≤ |T (ε, n)| ≤ 2n(H(p)+ε)

We will now apply this theorem to the problem of diluting and distilling entanglement
from |ψ〉. To this end, suppose that |ψ〉 =

∑
x

√
p(x) |xA〉 |xB〉 in Schmidt decompo-

sition. Moreover, define by |φm〉 the state obtained from |ψ〉⊗m by omitting all terms
that are not ε-typical and renormalising.

a) Show that the number of terms in |φm〉 is at most 2m(S(ρψ)+ε) where ρψ = TrB[|ψ〉〈ψ|].

Solution: We have that

|ψ〉⊗m =
∑

x1,...,xm

√
p(x1) · · · p(xm) |xA,1 · · ·xA,m〉 |xB,1 · · ·xB,m〉

from which we obtain |φm〉 by omitting all basis states indexed by strings that are not
ε-typical, i.e., strings x1, . . . , xm for which Eq. (8) holds. This yields an unnormalized
state

|φ′m〉 =
∑

(x1,...,xm) ε−typical

√
p(x1) · · · p(xm) |xA,1 · · ·xA,m〉 |xB,1 · · · xB,m〉 ,

which we normalize to obtain |φm〉 = |φ′m〉 /
√
〈φ′m | φ′m〉. By Thm. 2 (ii) the number

of terms is upper bounded by 2m(H(p)+ε). But on the other hand, we have that

|ψ〉〈ψ| =
∑
x,y

√
p(x)p(y) |xA〉 |xB〉 〈yA| 〈yB|

and hence

TrB[|ψ〉〈ψ|] =
∑
x,y

√
p(x)p(y) 〈xB| |xA〉 |xB〉 〈yA| 〈yB| |xB〉 =

∑
x

p(x) |xA〉〈xA| .

Since ρψ is diagonal in the Schmidt basis we have that S(ρψ) = H(p) and the claim
follows.

Let us now look at the following entanglement dilution protocol: Alice and Bob share
n Bell states. Alice locally prepares |φm〉 and teleports one half of |φm〉 to Bob.

b) How many Bell states are required such that after the dilution protocol Alice and
Bob share |φm〉.
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Solution: Recall from quantum teleportation that a qubit can be teleported using one
bell state. Correspondingly, a state |ψ〉 ∈ C2n having an n-qubit representation needs
n Bell states for telportation.

From part a) we know, that |φ〉 is in a subspace C ⊂ C2m of dimension deff =
2m(S(ρψ)+ε), i.e. C ∼= Cdeff . Thus, we need dm(S(ρψ) + ε)e Bell states for teleportation.

An explicit representation of |φ〉 in a computational basis of the smaller vector space
C can be achieved by performing Schumacher compression.

c) Use Theorem 2 (i) to find a lower bound on the fidelity | 〈φm | ψ〉⊗m |2 for a suitably
chosen m.

Solution: The theorem gives us a lower bound on the probability that any given string
chosen according to p is ε-typical. Rewriting this condition, we have that

Pr[(x1, . . . , xm) ∈ T (ε,m)] =
∑

x1,...,xm ε−typical

p(x1) · · · p(xm) ≥ 1− δ

But on the other hand

| 〈φm | ψ〉⊗m |2 =
1

〈φ′m | φ′m〉
| 〈φ′m | ψ〉

⊗m |2 = 〈φ′m | φ′m〉

=
∑

x1,...,xm ε−typical

p(x1) · · · p(xm),

which shows the claim.

An entanglement concentration protocol proceeds along similar lines: Suppose Alice
and Bob share n copies of |ψ〉. Alice performs a measurement that projects onto the
ε-typical subspace of |ψ〉 to convert |ψ〉⊗m into |φm〉.

d) Determine an upper bound on the Schmidt coefficients of |φm〉.

Solution: By the definition and Theorem 2 (i) we have the upper bound 2−m(S(ρψ)−ε)/(1−
δ).

e) Determine n as a function of m such that the state |φm〉 obtained from the pro-
jective measurement can be transformed into n Bell pairs using LOCC.

Solution: Choose n such that

2−m(S(ρψ)−ε)

1− δ
≤ 2−n

Then the vector of eigenvalues of TrB[|φm〉〈φm|] is majorized by (2−n, . . . , 2−n) and
by the previous exercise there exists an LOCC-protocol transforming |φm〉 into |ω〉⊗n,
recalling that the Schmidt coefficients of |ω〉⊗n are just given by 2−n

f) Show that the scaling of resources required for the distillation procedure is optimal.

Hint: Argue by means of a contradiction.

Solution: Assume it was possible to distil more than n ≈ mS(ρψ) many ebits from
|φm〉. Then one could take S(ρψ) many Bell states, dilute them into a copy of |ψ〉 and
from |ψ〉 distil S > S(ρψ) many Bell states again by means of LOCC. But one can
convince oneself that under LOCC the Schmidt number, i.e. the rank of the reduced
density matrix, is preserved.
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There are many more interesting issues that arise in the context of entanglement trans-
formation, some of which we want to mention here but cannot go into here3.

(i) There exist entangled states that cannot be distilled. These are precisely the positive-
partial-transpose entangled states (Horodecki et al., 1998).

(ii) Some transformations between quantum states |ψ〉 and |φ〉 using LOCC become possi-

ble only through a so-called catalyst state |c〉, that is, while |ψ〉 LOCC−−−→ |φ〉 is impossible,

there exists a state |c〉 such that |ψ〉 |c〉 LOCC−−−→ |φ〉 |c〉 is possible.

(iii) For the original paper on concentrating entanglement see (Bennett et al., 1996).
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3... because the sheet is already a bit long...
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