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1. On Shannon entropy...

To begin with let us first show some simple properties of entropies, in particular, of the
mutual information.

Recall the definition of the Shannon entropies for random variables X, Y which take
values in X ,Y and are distributed according to probability distributions p, q over X
and Y , respectively.

(1)H(X) = −
∑
x∈X

p(x) log p(x) (Shannon entropy) (1)

(2)H(X|Y ) = H(X, Y )−H(Y ) =
∑
x∈X

p(x)H(Y |X = x) (Conditional entropy)

(2)

(3) I(X : Y ) = H(Y )−H(Y |X) (Mutual information) (3)

a) Show that 0 ≤ H(X) ≤ log |X |, where the first equality holds iff there is an x ∈ X
for which p(x) = 1 and the second inequality holds iff p(x) = 1/|X | for all x.

b) Show that the Shannon entropy is subadditive, i.e., that H(X, Y ) ≤ H(X)+H(Y ).

Hint: Show that H(X, Y )−H(X)−H(Y ) ≤ 0 using that log2 x ln 2 = lnx ≤ x−1.

c) Show that H(Y |X) ≥ 0 and hence I(X : Y ) ≤ H(Y ) with equality if and only if
Y is a (deterministic) function of X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x)

d) Show that H(Y |X) ≤ H(Y ) and hence that I(X : Y ) ≥ 0 with equality if and
only if X and Y are independent random variables.

2. ... and the von-Neumann entropy

For any state ρ ∈ D(H) with dimH = d the von-Neumann entropy is defined as
S(ρ) = −Tr(ρ log ρ).

a) Show that 0 ≤ S(ρ) with equality if and only if ρ is pure. (One can also show the
upper bound S(ρ) ≤ log d.)

b) Show that the von-Neumann entropy is subadditive in the sense that if two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B).

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum
state σ.

c) Suppose that pi are probabilities and the eigenspaces of the states ρi are orthogonal.
Show that

S

(∑
i

piρi

)
= H(pi) +

∑
i

piS(ρi).
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and use this result to infer that

S

(∑
i

piρi ⊗ |i〉〈i|

)
= H(pi) +

∑
i

piS(ρi),

where 〈i | j〉 = δij and the ρi are arbitrary quantum states.

d) Use the results from (b) and (c) to infer that the von-Neumann entropy S is
concave.

3. Classical and quantum channels.

In this problem we will take a closer look at some aspects of classical and quantum
channels. We saw two alternative characterisations of the classical channel capacity
C(1)(E) of a quantum channel E with product inputs as given by Holevo information
χ(E). The Holevo information is defined as

χ(E) = max
X,ρx

I(X : B) (4)

= max
X,ρx

(
S(E(ρ))−

∑
x

pxS(E(ρx))

)
, (5)

where we assumed that the quantum state shared by Alice and Bob after the protocol
is given by ρXB =

∑
x px |x〉〈x| ⊗ E(ρx) and X denotes the random variable of Alice’s

source.

a) Show the equality between Eqs. (4) and (5).

Remember that Shannon’s noisy channel coding theorem states that the capacity of a
noisy channel T is given by the maximum over all inputs of the mutual information:

C(T ) = max
X,pX

I(X : Y ),

where we let Y = T (X) be the random variable obtained from applying the channel T
to X.

b) Determine the channel capacity of the binary symmetric channel defined by

Pr(0|0) = Pr(1|1) = 1− p
Pr(1|0) = Pr(0|1) = p.

Hint: It may be useful to expand H(Y |X) as
∑

x p(x)H(Y |X = x).

We now want to determine the channel capacity of the binary erasure channel as defined
by

Pr(0|0) = Pr(1|1) = 1− p
Pr(e|0) = Pr(e|1) = p.

c) First, use the expansion H(Y ) = H(Y,E) = H(E)+H(Y |E) to show that H(Y ) =
H(p) + (1 − p)H(π). Here, we let E be the event {Y = e} that obtains with
probability p and we call π = Pr(X = 1).

Hint: Use Eq. (2) and Pr(Y = y|Y 6= e) = Pr(X = y).

d) Use this result and proceed analogously to the binary symmetric channel to de-
termine the channel capacity of the erasure channel.
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4. Detecting Eve. One key feature of the BB’84 protocol for quantum key distribution
is that Alice and Bob are able to estimate how many bits were corrupted by the channel
or Eve by comparing their results on a subset.

In this excercise, we will prove this statement. More precisely, let Alice and Bob
randomly select n of their 2n bits check for errors. We denote the number of errors in
the test bits by eT and the number of errors in the remaining, untested n bits by eR.
Then, for any δ > 0

p := Pr{eT ≤ δn ∧ eR ≥ (δ + ε)} ≤ exp
[
−O(nε2)

]
. (6)

In other words, the probability that the number of errors in the unknown bits deviati-
ates by more than ε from the observed fraction δ in the test bits gets very small large
n and ε.

We denote the total number of errors that occur in the 2n bits by µn.

a) Argue that

p ≤
(

2n

n

)−1(
µn

δn

)(
(2− µ)n

(1− δ)n

)
δn. (7)

We will need a few identities to massage this term. To this end, let H(p) = −p log2 p−
(1− p) log2(1− p) be the binary entropy.

b) Show that

nH(p) +O(log2 n) ≤ log2

(
n

pn

)
≤ nH(p) +O(log2 n). (8)

Hint: Recall Stirling’s bound
√

2π
√
nnne−n ≤ n! ≤ e

√
nnne−n.

Furthermore, one can derive the following simple bound for the binary entropy H(x) ≤
1 − 2

(
x− 1

2

)2
. (If you are curious, it is a good excercise to use Taylor’s theorem

including an estimate for the remainder to derive this bound.)

c) Plug everything together and show that p ≤ exp [−O(nε2)].
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