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1. On Shannon entropy...

To begin with let us first show some simple properties of entropies, in particular, of the
mutual information.

Recall the definition of the Shannon entropies for random variables X, Y which take
values in X ,Y and are distributed according to probability distributions p, q over X
and Y , respectively.

(1)H(X) = −
∑
x∈X

p(x) log p(x) (Shannon entropy) (1)

(2)H(X|Y ) = H(X, Y )−H(Y ) =
∑
x∈X

p(x)H(Y |X = x) (Conditional entropy)

(2)

(3) I(X : Y ) = H(Y )−H(Y |X) (Mutual information) (3)

a) Show that 0 ≤ H(X) ≤ log |X |, where the first equality holds iff there is an x ∈ X
for which p(x) = 1 and the second inequality holds iff p(x) = 1/|X | for all x.

Solution: First inequality. Since p(x) ≤ 1 for all x, we have log(x) ≤ 0, which
implies that with p(x) ≥ 0 that 0 ≤ H(X). We have equality if there exist x ∈ X
with p(x) = 1, since implies H(X) = 0. The reverse direction follows from the fact
that H(X) is concave and the set of probability distributions is convex and, hence,
it take its minimum at the extreme points, which have p(x) = 1 for one x ∈ X.
Second inequality. Again using that H(X) is concave, we conclude that H(X) =
−
∑

x p(x) log p(x) ≤ − log (
∑

x p(x)2). The term
∑

x p(x)2 takes its minimum over
the simplex of probability distribution if p(x) = 1/|X | for all x. In this case, the
inequality is saturated and H(X) = − log (

∑
x p(x)2) = log |X |. This establishs the

claim.

b) Show that the Shannon entropy is subadditive, i.e., that H(X, Y ) ≤ H(X)+H(Y ).

Hint: Show that H(X, Y )−H(X)−H(Y ) ≤ 0 using that log2 x ln 2 = lnx ≤ x−1.

Solution: Using that
∑

x p(x, y) = p(y) we have that

H(X, Y )−H(X)−H(Y ) = −
∑
x,y

p(x, y)(log p(x, y)− log p(x)− log p(y))

(4)

=
∑
x,y

p(x, y) log
p(x)p(y)

p(x, y)
≤ 1

ln 2

∑
x,y

p(x, y)

(
p(x)p(y)

p(x, y)
− 1

)
(5)

=
1

ln 2

∑
x,y

(p(x)p(y)− p(x, y)) =
1

ln 2
(1− 1) = 0 (6)

We also see that equality holds if and only if p(x, y) = p(x)p(y) for all x, y, i.e. for
independent random variables X and Y .
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c) Show that H(Y |X) ≥ 0 and hence I(X : Y ) ≤ H(Y ) with equality if and only if
Y is a (deterministic) function of X.

Hint: Use Bayes’ rule: p(x, y) = p(y|x)p(x)

Solution: We have

H(X, Y ) = −
∑
x,y

p(x, y) log p(x)p(y|x) (7)

= −
∑
x

p(x) log p(x)−
∑
x,y

p(x, y) log p(y|x) (8)

= H(X)−
∑
x,y

p(x, y) log p(y|x) (9)

The last term thus equals the conditional entropy and from p(y|x) ≤ 1 we derive that
the conditional entropy is positive. For p(y|x) = 1 we have equality, which is precisely
the condition that y follows deterministically from x.

This translates directly to the claim for the mutual information: I(X : Y ) = H(Y )−
H(Y |X) ≤ H(Y ).

d) Show that H(Y |X) ≤ H(Y ) and hence that I(X : Y ) ≥ 0 with equality if and
only if X and Y are independent random variables.

Solution: Using subadditivity, we have

H(Y |X) = H(X, Y )−H(X) ≤ H(X) +H(Y )−H(X) = H(Y ). (10)

Equality holds if H(X, Y ) = H(X) + H(Y ) which is the case if p(x, y) = p(x)p(y)
as we have seen when proving subadditivity.

Again, the statement for the mutual information is an immediate consequence.

2. ... and the von-Neumann entropy

For any state ρ ∈ D(H) with dimH = d the von-Neumann entropy is defined as
S(ρ) = −Tr(ρ log ρ).

a) Show that 0 ≤ S(ρ) with equality if and only if ρ is pure. (One can also show the
upper bound S(ρ) ≤ log d.)

Solution: Diagonalize ρ to obtain S(ρ) = −
∑

x λx log λx. Using that λx form a
probability distribution, the claim follows from the of the Shannon entropy.

b) Show that the von-Neumann entropy is subadditive in the sense that if two distinct
systems A and B have a joint quantum state ρAB then S(A,B) ≤ S(A) + S(B).

Hint: You may use the inequality S(ρ) ≤ −Tr[ρ log σ] for an arbitrary quantum
state σ.

Solution: Let ρ = ρAB, σ = ρA ⊗ ρB

S(A,B) = S(ρAB) ≤ S(TrB[ρAB]) + S(TrA[ρAB])
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Now choose σ = ρA ⊗ ρB. Then introducing the eigenvalue decomposition of ρA =
UΛAU

† and ρB = V ΛBV
†, we write

S(ρ) ≤ −Tr[ρ log ρA ⊗ ρB]

= −Tr[ρ(U ⊗ V ) log(ΛA ⊗ ΛB)(U ⊗ V )†]

= −Tr[ρ(U ⊗ V ) log(ΛA ⊗ ΛB)(U ⊗ V )†]

= −Tr[ρ(U ⊗ V )(log(ΛA)⊗ 1 + 1⊗ log ΛB)(U ⊗ V )†]

= −TrAB[ρ(log(ρA)⊗ 1)]− TrAB[ρ(1⊗ log ρB))]

= S(ρA) + S(ρB).

c) Suppose that p = (pi)i is a probability vector and the states ρi are mutually
orthogonal. Show that

S

(∑
i

piρi

)
= H(p) +

∑
i

piS(ρi).

and use this result to infer that

S

(∑
i

piρi ⊗ |i〉〈i|

)
= H(p) +

∑
i

piS(ρi),

where 〈i | j〉 = δij and the ρi are arbitrary quantum states.

Solution:

S

(∑
i

piρi

)
= −Tr

[∑
i,j

piλ
j
iΠ

j
i log

(∑
i,j

piλ
j
iΠ

j
i

)]
(11)

= −Tr

[∑
i,j

piλ
j
iΠ

j
i

(∑
i,j

(log pi + log λji )Π
j
i

)]
(12)

= −

(∑
i,j,k,l

piλ
j
i (log pk + log λlk)

)
Tr
[
Πj
iΠ

l
k

]
(13)

= −

(∑
i,j

piλ
j
i (log pi + log λji )

)
(14)

= H(p) +
∑
i

piS(ρi) (15)

We use the equality in the subadditivity condition for S(ρ⊗ σ) = S(ρ) + S(σ). This
gives S(ρi ⊗ |i〉〈i|) = S(ρi) + S(|i〉〈i|) = S(ρi)

d) Use the results from (b) and (c) to infer that the von-Neumann entropy S is
concave.

Solution: To show: S(
∑

i piρi) ≥
∑

i piS(ρi).

∑
i

piS(ρi) = S

(∑
i

piρi ⊗ |i〉〈i|

)
−H(p)

≤ S

(∑
i

piρi

)
+ S

(∑
i

pi |i〉〈i|

)
−H(p) = S

(∑
i

piρi

)
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since S(
∑

i pi |i〉〈i|) = H(p)

3. Classical capacities of quantum channels
(This excercise was a former part (a) of the next excercise. For the sake of a clearer
presentation, we have split it into two excercises, one concerned with quantum channels
and one concerned with classical channels. It also got quite a few more explanatory
words to repeat the necessary definitions from the lecture.)
In the lecture, we saw two alternative characterisations of the classical channel capacity
of a quantum channel E , which is given by the its Holevo-information χ(E). The task
here is to establish the equivalence of these expressions.

To this end, recall the definition of the quantum mutual information of a bi-partite
quantum system in a state ρAB

I(A : B)ρAB
:= S(ρA) + S(ρB)− S(ρAB). (16)

The Holevo information of channel can be defined using the following scheme: Alices
encodes the information of a classical random variable X taking values in X with prob-
ability distribution pX into a quantum state using a set of states {ρx}x∈X . To keep track
of the classical random variable but formulating everything quantum mechanically, we
think of Alice encoding the result in another faithfully register N using orthogonal
basis {|x〉}x∈X . From this notebook register N the classical information of X can be
completely recovered. Altogether, Alice prepares the bi-partite state

ρNA =
∑
x

pX(x) |x〉〈x|N ⊗ ρ
x
A. (17)

Then, the state in system A is sent to Bob using the channel E . Thus, we end up with
a final state shared between Alice’s notebook and Bob

ρNB =
∑
x

pX(x) |x〉〈x|N ⊗ E(ρxA)B. (18)

We can now ask for the mutual information between the variable X encoded in N and
Bob’s output of the channel. Analogously to the classical result, maximizing the mutual
information over all possible input variables X and encodings yields the capacity of the
quantum channel to transmit classical informations, i.e.

χ(E) = max
(X,pX ,{ρx})

I(N,B)ρNA
. (19)

Show that

χ(E) = max
(X,pX ,{ρx})

{
S(E(

∑
x

pX(x)ρx))−
∑
x

pX(x)S(E(ρx))

}
. (20)

Solution: Let’s simply call σxB := E(ρxA)B. The marginal states of ρNB are

ρN = TrB ρNB =
∑
x

pX(x) |x〉〈x| , (21)

ρB = TrN ρNB =
∑
x

pX(x)σxB. (22)

In the calculation of Exercise 2.c) we have already seen that

S(ρNB) = H(X) +
∑
x

pX(x)S(σxB). (23)
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Thus, the mutual information is

I(N : B)ρNB
= S(ρN) + S(ρB)− S(ρNB) (24)

= H(X) + S

(∑
x

pX(x)σxB

)
−H(X)−

∑
x

pX(x)S(σxB), (25)

from which the claim follows.

4. Classical channel capacities.

Remember that Shannon’s noisy channel coding theorem states that the capacity of a
noisy channel T is given by the maximum over all inputs of the mutual information:

C(T ) = max
X,pX

I(X : Y ),

where Y is the random variable describing the output of the channel T with input X.

a) Determine the channel capacity of the binary symmetric channel defined by

Pr(0|0) = Pr(1|1) = 1− p
Pr(1|0) = Pr(0|1) = p.

Hint: It may be useful to expand H(Y |X) as
∑

x p(x)H(Y |X = x).

Solution: We have

I(X : Y ) = H(Y )−H(Y |X) = H(Y )−
∑
x

pX(x)H(Y |X = x)

= H(Y )−
∑
x

p(x)H2(p) = H(Y )−H2(p)

≤ 1−H2(p),

where the last equation follows because Y is a binary random variable and H2(p) =
−p log(p)− (1− p) log(1− p) is the binary entropy. Note that we can always ensure
that Y is equally distributed by choosing X equally distributed. Hence, C = 1−H(p).

We now want to determine the channel capacity of the binary erasure channel as defined
by

Pr(0|0) = Pr(1|1) = 1− p
Pr(e|0) = Pr(e|1) = p.

b) First, use the expansion H(Y ) = H(Y, Z) = H(E)+H(Y |Z) to show that H(Y ) =
H(p)+(1−p)H(π). Here, we let Z be the random variable distinguishing between
the event E = {Y = e} and ¬E = {Y 6= e}. We have that Pr(Z = E) = p.
Furthermore we call the propability defining the distribution of the input variable
π = Pr(X = 1).

Hint: Use Eq. (2) and Pr(Y = y|Y 6= e) = Pr(X = y).

Solution: First, we have that Pr(Z = E) = Pr(Z = E|X = 0) Pr(X = 0)+Pr(Z =
E|X = 1)Pr(X = 1) = pπ + p(1− π) = p. On the other hand

H(Y ) = H(Z) + Pr(Z = ¬E)H(Y |Z = ¬E) + p(Z = E)H(Y |Z = E)

= H2(p) + pH(Y |Y = e) + (1− p)H(Y |Y 6= e)

= H2(p) + p · 0 + (1− p)H2(π),

5



where we used that H(Y |Y = e) = 0 since Y can only take the value e with probability
1. On the other hand, H(Y |Y = ¬e) = H(π) since if Y 6= e then the case Y = 1
occurs with probability π whereas the case Y = 0 occurs with probability 1− π.

c) Use this result and proceed analogously to the binary symmetric channel to de-
termine the channel capacity of the erasure channel.

Solution: Now, we need to maximize the obtaining expression as

C = max
p(x)

H(Y )−H(Y |X) = max
p(x)

H2(p) + (1− p)H2(π)−H2(p)

= max
π

(1− p)H2(π) = 1− p

where the maximum of H2 of 1 is achieved for π = 1/2.

5. Detecting Eve. One key feature of the BB’84 protocol for quantum key distribution
is that Alice and Bob are able to estimate how many bits were corrupted by the channel
or Eve by comparing their results on a subset.

In this excercise, we will prove this statement. More precisely, let Alice and Bob
randomly select n of their 2n bits check for errors. We denote the number of errors in
the test bits by eT and the number of errors in the remaining, untested n bits by eR.
Then, for any δ > 0

p := Pr{eT ≤ δn ∧ eR ≥ (δ + ε)} ≤ exp
[
−O(nε2)

]
. (26)

In other words, the probability that the number of errors in the unknown bits deviati-
ates by more than ε from the observed fraction δ in the test bits gets very small large
n and ε.

We denote the total number of errors that occur in the 2n bits by µn.

a) Argue that

p ≤
(

2n

n

)−1(
µn

δn

)(
(2− µ)n

(1− δ)n

)
δn. (27)

Solution: Ok, we are given a bit strings of length 2n. This string can be partitioned
into two strings of equal size in

(
2n
n

)
ways. The number of ways in which we end

up with one substring containing exactly i of the µn corrupted bits is
(
µn
i

)(
2n−µn
n−i

)
.

Therefore, the probability of getting up to δn corrupted bits is

p =

(
2n

n

)−1 δn∑
i=1

(
µn

i

)(
(2− µ)n

n− i

)
≤
(

2n

n

)−1(
µn

δn

)(
(2− µ)n

(1− δ)n

)
δn, (28)

where we have used that i/n ≤ δ = µ
2
− ε

2
≤ µ

2
.

We will need a few identities to massage this term. To this end, let H(p) = −p log2 p−
(1− p) log2(1− p) be the binary entropy.

b) Show that

nH(p) +O(log2 n) ≤ log2

(
n

pn

)
≤ nH(p) +O(log2 n). (29)

Hint: Recall Stirling’s bound
√

2π
√
nnne−n ≤ n! ≤ e

√
nnne−n.
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Solution: Setting q = 1− p,(
n

np

)
=

n!

(np)!(nq)!
≤

e
√
n
(
n
e

)n
2πn
√
pq
(
np
e

)np (nq
e

)nq (30)

=
e

2π
√
npq

p−npq−nq. (31)

Taking the logarithm yields

log2

(
n

np

)
≤ −n[p log2 p+q log2 q]+log2

e

2π
−1

2
log2 npq = nH(p)+O(log2 n). (32)

The lower bound follows analogously and only differs in the constant offset.

Furthermore, one can derive the following simple bound for the binary entropy H(x) ≤
1 − 2

(
x− 1

2

)2
. (If you are curious, it is a good excercise to use Taylor’s theorem

including an estimate for the remainder to derive this bound.)

Solution: The first derivatives of H are

H ′(x) = − log2(x) + log2(1− x) (33)

H ′′(x) = − 1

x ln(2)
− 1

(1− x) ln(2)
(34)

H ′′′(x) =
1

x2 ln(2)
− 1

(1− x)2 ln(2)
. (35)

The maximum of H(x) is at xmax = 1
2

with H(xmax) = 1 and H ′′(xmax) = − 4
ln(2)
≥ 4.

Thus, by Taylor’s theorem

H(x) = 1− 2

ln 2

(
x− 1

2

)2

+R(x) ≤ 1− 2

(
x− 1

2

)2

+R(x), (36)

with R(x) = 1
6
H ′′′(ξ)

(
x− 1

2

)3
for suitable ξ ∈ (1

2
, x) for x ≥ 1

2
or ξ ∈ (x, 1

2
) for x ≤ 1

2
.

The third derivative can be written as H ′′′(ξ) = −2
ξ− 1

2

ξ2 ln(2)(ξ−1)2 . Thus, as x and ξ are always

on the same side of 1
2

we always end up with an overall minus sign. So since R(x) ≤ 0 for
all x, it can be dropped to arrive at the bound.

c) Plug everything together and show that p ≤ exp [−O(nε2)].

Solution: The solution of (b) implies that up to log-factors(
bn

an

)
≈ 2bnH(a/b). (37)

Thus, up to log-terms in n

log2 p ≤ −2nH(1/2) + µnH(δ/µ) + (2− µ)nH

(
1− δ
2− µ

)
(38)

≤ −2n+ µn

(
1− 2

(
δ

µ
− 1

2

)2
)

+ (2− µ)n

(
1− 2

(
1− δ
2− µ

− 1

2

)2
)

(39)

= −2n+ µn− 1

2
µn(ε/µ)2 + 2n− µn− 1

2
nε2/(2− µ) (40)

= −1

2
n

(
1

µ
+

1

2− µ

)
ε2 (41)

= −n 1

µ(µ− 2)
ε2 ∈ −O(nε2). (42)
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Here we have used that from δ = µ/2− ε/2 it follows that

2

(
δ

µ
− 1

2

)2

=
1

2

(
ε

µ

)2

(43)

and

2

(
1− δ
2− µ

− 1

2

)2

=
1

2

(
2− µ+ ε

2− µ
− 1

)2

(44)

= −1

2

ε2

(2− µ)2
. (45)
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